[1] Agmon, S.: Lower bounds for solutions of Schr¨odinger equations. J. d’Anal. Math. 23, 1-25 (1970)
Download 14.73 Kb.
|
8-shablon
Adabiyotlar [1] Agmon, S.: Lower bounds for solutions of Schr¨odinger equations. J. d’Anal. Math. 23, 1–25 (1970) [2] Agmon, S.: Spectral properties of Schr¨odinger operators and scattering theory. Ann. Sc. Norm. Super. Pisa. 2, 151–218 (1975) [3] Agmon, S., H¨ormander, L.: Asymptotic properties of solutions of differential equations with simple characteristics. J. d’Anal. Math. 30, 1–38 (1976) [4] Ando, K.: Inverse scattering theory for discrete Schr¨odinger operators on the hexagonal lattice. Ann. Henri Poincar´e 14, 347–383 (2013) [5] Ando, K., Isozaki, H., Morioka, H.: Inverse scattering for Schr¨odinger operators on perturbed lattices (2015, in preparation) [6] Burago, D., Ivanov, S., Kurylev, Y.: A graph discretization of the Laplace– Beltrami operator. arXiv:1301.2222 [7] Chirka, E.M.: Complex Analytic Sets Mathematics and Its applications. Kluwer, Dordrecht (1989) [8] Colin de Verdi`ere, Y., Fran¸coise, T.: Scattering theory for graphs isomorphic to a regular tree at infinity. J. Math. Phys. 54, 063502 (2013) [9] Derezi´nski, J., G´erard, C.: Scattering Theory of Classical and Quantum NParticle Systems. Springer, Berlin (1997) [10] Enss, V.: Asymptotic completeness for quantum-mechanical potential scattering, I Short range potentials. Commun. Math. Phys. 61, 285–291 (1978) [11] M. Reed and B. Simon: Methods of modern mathematical physics. I: Functional analysis. Academic Press, N.Y., London 1972. [12] V.A.Trenogin: Functional analysis. ”Nauka”, Moscow 1980. [13] M. Reed and B. Simon: Methods of modern mathematical physics. IV: Analysis of operators. Academic Press, N.Y., 1978. Download 14.73 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling