[1] Agmon, S.: Lower bounds for solutions of Schr¨odinger equations. J. d’Anal. Math. 23, 1-25 (1970)


Download 14.73 Kb.
Sana27.02.2023
Hajmi14.73 Kb.
#1234716
Bog'liq
8-shablon


Adabiyotlar
[1] Agmon, S.: Lower bounds for solutions of Schr¨odinger equations. J. d’Anal. Math. 23, 1–25 (1970)
[2] Agmon, S.: Spectral properties of Schr¨odinger operators and scattering theory. Ann. Sc. Norm. Super. Pisa. 2, 151–218 (1975)
[3] Agmon, S., H¨ormander, L.: Asymptotic properties of solutions of differential equations with simple characteristics. J. d’Anal. Math. 30, 1–38 (1976)
[4] Ando, K.: Inverse scattering theory for discrete Schr¨odinger operators on the hexagonal lattice. Ann. Henri Poincar´e 14, 347–383 (2013)
[5] Ando, K., Isozaki, H., Morioka, H.: Inverse scattering for Schr¨odinger operators on perturbed lattices (2015, in preparation)
[6] Burago, D., Ivanov, S., Kurylev, Y.: A graph discretization of the Laplace– Beltrami operator. arXiv:1301.2222
[7] Chirka, E.M.: Complex Analytic Sets Mathematics and Its applications. Kluwer, Dordrecht (1989)
[8] Colin de Verdi`ere, Y., Fran¸coise, T.: Scattering theory for graphs isomorphic to a regular tree at infinity. J. Math. Phys. 54, 063502 (2013)
[9] Derezi´nski, J., G´erard, C.: Scattering Theory of Classical and Quantum NParticle Systems. Springer, Berlin (1997)
[10] Enss, V.: Asymptotic completeness for quantum-mechanical potential scattering, I Short range potentials. Commun. Math. Phys. 61, 285–291 (1978)
[11] M. Reed and B. Simon: Methods of modern mathematical physics. I: Functional analysis. Academic Press, N.Y., London 1972.
[12] V.A.Trenogin: Functional analysis. ”Nauka”, Moscow 1980.
[13] M. Reed and B. Simon: Methods of modern mathematical physics. IV: Analysis of operators. Academic Press, N.Y., 1978.
Download 14.73 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling