1-amaliy mashg’ulot mavzu: Toʼplamlar va ular ustida amallar. Eyler-Venn diagrammalari. Toʼplamning quvvatini topishga doir masalalar yechish. Munosabatlar ustida amallar. Munosabatlar kompozitsiyasi. Binar munosabatlar va ularning matritsalarini


Download 69.85 Kb.
bet1/3
Sana28.01.2023
Hajmi69.85 Kb.
#1136339
  1   2   3
Bog'liq
1-AMALIY resurs


1-AMALIY MASHG’ULOT


MAVZU: Toʼplamlar va ular ustida amallar. Eyler-Venn diagrammalari. Toʼplamning quvvatini topishga doir masalalar yechish.Munosabatlar ustida amallar. Munosabatlar kompozitsiyasi. Binar munosabatlar va ularning matritsalarini topish.Munosabatlarning turlarini aniqlash. Refleksivlik. Simmetriklik. Tranzitivlik. Аntisimmetriklik. Ekvivalent munosabatlarni aniqlashga doir misollar yechish.Аkslantirishlar. Inʼektiv, syurʼektiv, biektiv funktsiyalar. Funktsiya turlarini aniqlashga doir misollar yechish

Quyidagi misollarnig shartlarida Universal to‘plam U={ a, b, c,





d, e, f, g,h } da X va Y to‘plamlar berilgan bo‘lib,


X Y , Y ,

XY ,
X Y ,


X \ Y
to‘plamlarni A, B, C lar orqali

ifodalang va Eyler-Venn diagrammalrida tasvirlang.



1.1.0

X={a,b,c,d},
Y={b,c,d,e}

1.1.10

X={c,d,e,f},
Y={e,f,g,h}

1.1.20

X={e,f,g,h},
Y={h,a,b,c}

1.1.1

X={b,c,d,e},
Y={c,d,e,,f}

1.1.11

X={d,e,f,g},
Y={f,g,h,a}

1.1.21

X={f,g,h,a},
Y={a,b,c,d}

1.1.2

X={c,d,e,,f},
Y={d,e,f,g}

1.1.12

X={e,f,g,h},
Y={g,h,a,b}

1.1.22

X={g,h,a,b},
Y={b,c,d,e}

1.1.3

X={d,e,f,g},
Y={e,f,g,h}

1.1.13

X={f,g,h,a},
Y={h,a,b,c}

1.1.23

X={h,a,b,c},
Y={c,d,e,,f}

1.1.4

X={e,f,g,h},
Y={a,f,g,h}

1.1.14

X={g,h,a,b},
Y={a,b,c,d}

1.1.24

X={a,b,e,f},
Y={c,d,e,,f}

1.1.5

X={a,,f,g,h},
Y={a,b,g,h}

1.1.15

X={h,a,b,c},
Y={b,c,d,e}

1.1.25

X={b,c,f,g},
Y={d,e,,f,g}

1.1.6

X={a,b,g,h},
Y={a,b,c,h}

1.1.16

X={a,b,c,d},
Y={d,e,f,g}

1.1.26

X={c,d,g,h},
Y={e,g,h,a}

1.1.7

X={a,b,c,h},
Y={a,b,c,d}

1.1.17

X={b,c,d,e},
Y={e,f,g,h}

1.1.27

X={d,e,h,a},
Y={g,h,a,b}

1.1.8

X={a,b,c,d},
Y={c,d,e,,f}

1.1.18

X={c,d,e,f},
Y={f,g,h,a}

1.1.28

X={e,f,a,b},
Y={h,a,b,c}

1.1.9

X={b,c,d,e},
Y={d,e,f,g}

1.1.19

X={d,e,f,g},
Y={g,h,a,b}

1.1.29

X={f,g,b,c},
Y={a,b,c,d}

0-topshiriqnig ishlanishi
1.1.0. U={ a, b, c, d, e, f, g,h } da X={a,b,c,d} va Y={b,c,d,e} to‘plamlar berilgan



bo‘lib,

X Y , Y ,
XY ,
X Y ,


X \ Y

to‘plamlarni A, B, C lar orqali



ifodalang va Eyler-Venn diagrammalrida tasvirlang.
X Y  a,b, c, db, c, d, e a,b, c, d, e f , g, h A B A B C
Y  b, c, d, e a, f , g, h A B C A B A B C
X Y  a,b, c, db, c, d, e e, f , g, hb, c, d, e b, c, d, f , g, h
B AC


X Y  a, b, c, d b, c, d, e a, b, c, d a, f , g, h a
A B C


X \ Y  a,b, c, d\ b, c, d, e e, f , g, h\ a, f , g, h e A B C
2. Murakkab to‘plamlarni soddalashtirish



1.2.0

(A B A) ∩ (A A B)

1.2.15

( A 𝖴 B)∩( B 𝖴A∩C)



1.2.1





1.2.16





1.2.2





1.2.17




1.2.3

( A \ B ∪ A ∩ B) ∩ А




1.2.18





1.2.4

(B\A) ∩ ( B\A)

1.2.19

A∩(A∩B𝖴 A B )∩( A 𝖴 C )



1.2.5




A B \ С A B \ С

1.2.20





1.2.6



A B \ С A  B \ С

1.2.21





1.2.7



A B A B




1.2.22





1.2.8




1.2.23





1.2.9








1.2.24

A∩( A ∩B𝖴 C)∩(A𝖴 C )






1.2.10

A (B




1.2.11



А ∩ (А В С) ∩ В С А В С




1.2.12


С ∩ (С В А) ∩ В А С В А




1.2.13








1.2.14




A/ B A/ C A/ B / C A B C




1.2.25








1.2.26








1.2.27








1.2.28








1.2.29





Yuqorida keltirilgan soddalashtirishlarni amalga oshirish uchun quyida keltirilgan to‘plamlar ustida amallar xossalaridan foydalaning:
U-universаl to‘plаmning А, B, C to‘plаm оstilаri uchun quyidаgi хоssаlаr o‘rinli



1.

A B B A




Kоmmutаtivlik

11.

А А А




2.

A B B A







12.

А А  U

0 vа 1 qоnunlаri

3.

(A B) ∪ C A ∪ (B C)




Аssоtsiаtivlik

13.

А А  Ø




4.

(A B) ∩ C A ∩ (B C)







14.

А ∪ Ø=A




5.

(A B) ∩ C  (A C) ∪ (B C)

distributivlik

15.

А U A




6.

(A B) ∪ C  (A C) ∩ (B C)




16.

А U U




7.

A ∩ (A B)  A

Yutilish qоnunlаri

17.

А ∩ Ø= Ø




8.

A ∪ (A B)  A







18.


U  Ø




9.

А В А В

De Mоrgаn qоnunlаri

19.

=U




10.

А В А В







20.

A\ B A B







21.




A A

Ikkilаngаn rаd etish qоnuni






1.2.0-variant


(A B A) ∩ (A A B)  6  xossaga _ ko' ra  (A B)  (A A)  (A A)  (A B) 
=12-xossaga ko‘ra 2,3-qavslar U ga teng, 15-xossaga ko‘ra esa 1- va 4-qavslarning

o‘zlari qoladi. ko‘ra) = B
( A B)  ( A B) =(6-xossaga ko‘ra)= A A B =(13 va 14-xossalarga

Shunday qilib soddalashtirish natijasi quyidagicha:

(A B A) ∩ (A A B)  B

Download 69.85 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling