1-mustaqil ish bajardi: Sulxonqulov Suxrobjon
Download 49.34 Kb.
|
Suxrob
- Bu sahifa navigatsiya:
- Chiziqli regressiya yordamida baholash jarayonini bashoratlash y=wx.
Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti “KIF” fakulteti talabasining “Pedagogika. Psixologiyasi” Fanidan topshirgan 1-MUSTAQIL ISH Bajardi: Sulxonqulov Suxrobjon Tekshirdi: Nurmurodov Javohir Savollar: 1. Chiziqli regressiya yordamida baholash jarayonini bashoratlash y=wx.
Chiziqli regressiya yordamida baholash jarayonini bashoratlash y=wx. import numpy as np import matplotlib.pyplot as plt import math n = int (input('Kerakli son= ')) m = int(input('Testlar qiymati = ')) x = [1,2,3] y = [2,4,6] w = np.zeros(n) r = np.zeros(n) w[0]=4 a = 0.01 for i in range(1,n): for j in range(0,3): w[i]=w[i-1]-a*2*(w[i-1]*x[j]-y[j])*x[j] r[i-1]=(w[i-1]*x[j]-y[j])**2 if 0.001 print(z) 2. Sigmoid aktivlash funksiyasi yordamida sinflashtirish. import numpy as np def sig(x): return 1/(1 + np.exp(-x)) import numpy as np def sig(x): return 1/(1 + np.exp(-x)) x = 1.0 print('Applying Sigmoid Activation on (%.1f) gives %.1f' % (x, sig(x))) x = -10.0 print('Applying Sigmoid Activation on (%.1f) gives %.1f' % (x, sig(x))) x = 0.0
x = 15.0
x = -2.0
Applying Sigmoid Activation on (1.0) gives 0.7 Applying Sigmoid Activation on (-10.0) gives 0.0 Applying Sigmoid Activation on (0.0) gives 0.5 Apply 3. Matritsani matritsaga ko’paytirish dasturi. #include using namespace std; int main() { int m1[10][10], m2[10][10], mul[10][10]; int r1, c1, r2, c2, i, j, k; cout << "Birinchi matritsaning satrlari va ustunlari sonini kiriting: "; cin >> r1 >> c1; cout << "Birinchi matritsaning elementlarini kiriting: " << endl; for(i = 0; i < r1; ++i) for(j = 0; j < c1; ++j) cin >> m1[i][j]; cout << "Ikkinchi matritsaning satr va ustunlari sonini kiriting: "; cin >> r2 >> c2; if (c1 != r2) { cout << "Matritsalarni ko'paytirib bo'lmaydi!"; return 0; } cout << "Ikkinchi matritsaning elementlarini kiriting: " << endl; for(i = 0; i < r2; ++i) for(j = 0; j < c2; ++j) cin >> m2[i][j]; for(i = 0; i < r1; ++i) for(j = 0; j < c2; ++j) { mul[i][j] = 0; for(k = 0; k < c1; ++k) mul[i][j] += m1[i][k] * m2[k][j]; } cout << "Matritsaning natijasi: " << endl; for(i = 0; i < r1; ++i) for(j = 0; j < c2; ++j) { cout << mul[i][j] << " "; if(j == c2-1) cout << endl; } return 0; } 4. Softmax aktivlash funksiyasi yordamida sinflashtirish. import numpy as np import seaborn as sns def sigmoid(x): exp_x = np.exp(x) return np.divide(exp_x,(1 + exp_x)) x = np.linspace(-10,10,num=200) exp_x = np.exp(x) sigmoid_arr = sigmoid(x) sns.set_theme() sns.lineplot(x = x,y = sigmoid_arr).set(title='Sigmoid Function') Download 49.34 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling