1-savol Integrallarning qiymatini 3 xona aniqlikda trapesiya va Simpson formulalari yordamida hisoblang
Download 167.1 Kb.
|
Qo‘boshevMuhiddin 1-joriy
1-joriy nazorat ishi. Variant-10. 1-savol Integrallarning qiymatini 3 xona aniqlikda trapesiya va Simpson formulalari yordamida hisoblang.
2-savol Quyidagi birinchi tartibli differentsial tenglamalar sistemasi uchun Koshi masalasini: Eyler usuli bilan taqribiy yechimini toping. y(0)=0 z(0)=0 1misol cod c++ da #include #include using namespace std; int main() { float a,b,h; int n ; cout<<" n = "; cin>>n; cout<<" a = "; cin >> a ; cout << " b = "; cin >> b; float x[n]; double y[n]; double sum=0; x[0]=a; h = (b-a)/n; cout< for(int i=0; i<=n; i++) { x[i]=x[0]+i*h; cout< y[i]=(1/sqrt(1+2*pow(x[i],2))); cout <<"y"< } for(int i=1; i sum += y[i]; } sum = h*(sum + (y[0]+y[10])/2); cout<<" Integral SimpSon natija = " << sum << endl; return 0; } #include #include using namespace std; int main() { float a,b,h; int n ; cout<<" n = "; cin>>n; cout<<" a = "; cin >>a ; cout << " b = "; cin >>b; float x[n]; double y[n]; double sum1=0; double sum2=0; x[0]=a;
h = (b-a)/n; cout< for(int i=0; i<=n; i++)
{
x[i]=x[0]+i*h; y[i]=(1/sqrt(1+2*pow(x[i],2))); cout <<"y"<
}
for(int i=1; i<=n; i+=2) sum1 =sum1 + y[i]; } sum1 = 4*sum1; for(int i=2; i<=n; i+=2) { sum2 = sum2 +y[i]; } sum2 = 2*sum2; sum1 = (h*(sum1+ sum2 + (y[0]+y[10])/2))/3; cout<<" Integral trapedsiya natija = " << sum1<< endl; return 0;} Download 167.1 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling