13-variant Guruh: iml002-3 Bajardi: Raxmatullayev Xusniddin Tekshirdi: Ochilov Mannon
Download 12.6 Kb.
|
raxmatullayev (6)
O`ZBEKISTON RESPUBLIKASI RAQAMLI TEXNOLOGIYALAR VAZIRLIGI M UHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI Mashinali o'qitishga kirish fanidan Amaliy ishi 2 13-variant Guruh: IML002-3 Bajardi:Raxmatullayev Xusniddin Tekshirdi: Ochilov Mannon Toshkent-2023 Telefon modellarini siflashtirish. O’zgatuvchi tanlamadagi misollar soni 40 Sinflar soni 3 Xususiyatlari soni 3 import numpy as np np.random.seed(0) # Set a seed for reproducibility num_examples = 40 num_classes = 3 num_features = 3 X = np.random.rand(num_examples, num_features) # Your feature data y = np.random.randint(0, num_classes, size=num_examples) # Your target labels import matplotlib.pyplot as plt feature1 = 0 feature2 = 1 plt.scatter(X[y == 0, feature1], X[y == 0, feature2], label='Class 0', marker='o') plt.scatter(X[y == 1, feature1], X[y == 1, feature2], label='Class 1', marker='x') plt.scatter(X[y == 2, feature1], X[y == 2, feature2], label='Class 2', marker='s') plt.xlabel(f'Feature {feature1}') plt.ylabel(f'Feature {feature2}') plt.legend() plt.show() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=42) from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) train_accuracy = model.score(X_train, y_train) test_accuracy = model.score(X_test, y_test) from sklearn.metrics import confusion_matrix import seaborn as sns y_pred = model.predict(X_test) cm = confusion_matrix(y_test, y_pred) plt.figure(figsize=(8, 6)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.xlabel('Predicted') plt.ylabel('True') plt.show() Download 12.6 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling