16-amaliy mashg‘ulot: Modulli ifodalar. Modulli tenglamalar
Download 37.44 Kb.
|
16-amaliy mashg‘ulot (2)
- Bu sahifa navigatsiya:
- J a v o b .
16-amaliy mashg‘ulot:Modulli ifodalar. Modulli tenglamalar 1. Modulli ifodalar. 2. Modulli tenglamalar 3. Modulli ifodalar ustida arifmetik amallar. 1. S o n n i n g m o d u l i . Sonning moduli tushunchasini eslatib o`tamiz: Musbat sonning moduli shu sonning o`ziga teng. Masalan, |3| = 3, |2,4| = 2,4 Manfiy sonning moduli unga qarama-qarshi songa teng,. Masalan, |–2| = –(–2) = 2, |–1,5| = –(–1,5) = 1,5 Nolning moduli nolga teng. |0| = 0. Shunday qilib, son modulining ta’rifi quyidagicha bo`ladi: |a| = a, agar a ≥ 0 bo`lsa, |a| = –a, agar a = 0 bo’lsa. Bu ta’rif formula yordamida qisqacha bunday yoziladi:
Son modulining geometrik ma’nosini qaraymiz. Son o`qida, masalan, 3 va –2 nuqtalarni tasvirlaymiz (41- rasm). Rasmdan ko`rinib turibdiki, |3| = 3 – bu 0 nuqtadan 3 nuqtagacha bo`lgan masofa, |–2| = 2 – bu 0 nuqtadan –2 nuqtagacha bo`lgan masofa. Shunday qilib, |a| geometrik nuqtayi nazardan 0 nuqtadan a sonni tasvirlavchi nuqtagacha bo`lgan masofadir. 1. (Og`zaki.) Sonning moduli nimaga teng: 1) 23; 2) 4,7; 3) -4; 4) –47; 5) –2,1; 6) -5,9 N o m a ’ l u m m o d u l b e l g i s i o s t i d a q a t n a s h g a n t e n g l a m a l a r. 1- m a s a l a . Tenglamani yeching: |x| = 7. 1) x ≥ 0 bo`lsin. U holda modulning ta’rifiga ko`ra |x| = x va tenglama bunday ko`rinishni oladi: x = 7, ya’ni x = 7 – berilgan tenglamaning ildizi; 2) x < 0 bo`lsin. U holda modulning ta’rifiga ko`ra |x| = –x va tenglama bunday ko`rinishni oladi: –x = 7, ya’ni x = –7 – berilgan tenglamaning ildizi. J a v o b . x1 = 7, x2 = –7. 2- m a s a l a . |3x + 2| = 1 tenglamani yeching. 1) 3x + 2 ≥ 0 bo`lsin. Bu holda 3x + 2 = 1, 3x = –1, 2) 3x + 2 < 0 bo`lsin. Bu holda 3x + 2 = –1, 3x = –3, x = –1. J a v o b . , x2 = –1. Tenglamani yeching (2– 5): 2. 1) |x| = 2,5; 2) |x| = 1,5; 3) |x – 1| = 2; 4) |x + 3| = 3. 3. 1) |x + 4| = 0; 2) |x – 2| = 0; 3) |2x – 3| = 0; 4) |3 – 4x| = 0. 4. 1) |3x – 5| = 5; 2) |4x + 3| = 2; 3) 4) 5. 1) |–x| = 3,4; 2) |–x| = 2,1; 3) |5 – x| = 5; 4) |3 – x| = 8. Nazorat uchun savollar: 1. Modul deb nimaga aytiladi? 2. Modulli tenglamalarga misollar keltiring. 3. Modulli ifodalar ustida qanday arifmetik amallar bajariladi? Download 37.44 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling