[2] V. K. Mel’nikov: Commun. Math. Phys. 120 (1989) 451; ibid. 126 201
Download 14.83 Kb.
|
[1] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971) 1192–1194. [2] V. K. Mel’nikov: Commun. Math. Phys. 120 (1989) 451; ibid. 126 201. [3] V. K. Mel’nikov, “A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the x, y plane,” Commun. Math. Phys., 112, 639–652 (1987); “Integration of the nonlinear Schroedinger equation with a self-consistent source,” Commun. Math. Phys., 137, 359–381 (1991). [4] V. K. Mel’nikov, “Integration method of the Korteweg–de Vries equation with a self -consistent source,” Phys. Lett. A, 133, 493–496 (1988).745 [5] J. Leon and A. Latifi, “Solution of an initial–boundary value problem for coupled nonlinear waves,” J. Phys. A: Math. Gen., 23, 1385–1403 (1990). [6] Zhang D J 2002 The N-soliton solutions for the modified KdV equation with self-consistent sources J. Phys. Soc. Japan 71 2649–56 [7] Zhang D J and Chen D Y 2003 The N-soliton solutions of the sine-Gordon equation with self-consistent sources Physica A 321 467–81 [8] Zhang D J 2003 The N-soliton solutions of some soliton equations with self-consistent sources Chaos Solitons Fractals 18 31–43 [9] Deng S F, Chen D Y and Zhang D J 2003 The Multisoliton solutions of the KP equation with self-consistent sources J. Phys. Soc. Japan 72 2184–92 [10] G. U. Urasboev and A. B. Khasanov: Theor. Math. Phys. 129 (2001) 1341. [11] Y. B. Zeng, W. X. Ma and R. L. Lin: J. Math. Phys. 41 (2000) 5453. [12] R. L. Lin, Y. B. Zeng and W. X. Ma: Physica A 291 (2001) 287. [13] Zeng Y B, Ma W X and Shao Y J 2001 Two binary Darboux transformations for the KdV hierarchy with self-consistent sources J. Math. Phys. 42 2113–28. Download 14.83 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling