[2] V. K. Mel’nikov: Commun. Math. Phys. 120 (1989) 451; ibid. 126 201


Download 14.83 Kb.
Sana05.01.2022
Hajmi14.83 Kb.
#224798

[1] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971) 1192–1194.

[2] V. K. Mel’nikov: Commun. Math. Phys. 120 (1989) 451; ibid. 126 201.

[3] V. K. Mel’nikov, “A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the x, y plane,” Commun. Math. Phys., 112, 639–652 (1987); “Integration of the nonlinear Schroedinger equation with a self-consistent source,” Commun. Math. Phys., 137, 359–381 (1991).

[4] V. K. Mel’nikov, “Integration method of the Korteweg–de Vries equation with a self -consistent source,” Phys. Lett. A, 133, 493–496 (1988).745

[5] J. Leon and A. Latifi, “Solution of an initial–boundary value problem for coupled nonlinear waves,” J. Phys. A: Math. Gen., 23, 1385–1403 (1990).

[6] Zhang D J 2002 The N-soliton solutions for the modified KdV equation with self-consistent sources J. Phys. Soc. Japan 71 2649–56

[7] Zhang D J and Chen D Y 2003 The N-soliton solutions of the sine-Gordon equation with self-consistent sources Physica A 321 467–81

[8] Zhang D J 2003 The N-soliton solutions of some soliton equations with self-consistent sources Chaos Solitons Fractals 18 31–43

[9] Deng S F, Chen D Y and Zhang D J 2003 The Multisoliton solutions of the KP equation with self-consistent sources J. Phys. Soc. Japan 72 2184–92

[10] G. U. Urasboev and A. B. Khasanov: Theor. Math. Phys. 129 (2001) 1341.

[11] Y. B. Zeng, W. X. Ma and R. L. Lin: J. Math. Phys. 41 (2000) 5453.

[12] R. L. Lin, Y. B. Zeng and W. X. Ma: Physica A 291 (2001) 287.



[13] Zeng Y B, Ma W X and Shao Y J 2001 Two binary Darboux transformations

for the KdV hierarchy with self-consistent sources J. Math. Phys. 42 2113–28.
Download 14.83 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling