3-lekciya Matrica túsinigi hám olar ústinde sızıqlı ámeller Reje
Download 232.06 Kb. Pdf ko'rish
|
oh5JZYGryq5jZCrnuXCsMJPOnezV26Ps
3-lekciya Matrica túsinigi hám olar ústinde sızıqlı ámeller Reje:
Matricalardı kóbeytiw, keri matricanı tabıw Matricalardıń ámeliy máselelerge qollanılıwı. Matrica tu’sinigi. Matrica rangi ha’m keri matrica
Meyli bizge (1) sanlarι berilgen bolsιn. Bul sanlardan du’zilgen
– tartipli matrica dep ataladι ha’m yamasa
(2)
ko’rinisinde belgilenedi. (1) sanlarι matricanιn’ elementleri dep ataladι. matricasι nollik matrιca dep ataladι. Bazi bir
jag’daylarda a’piuwayιlιq ushιn matricalardι yamasa
belgilerinen de paydaydalanιp jazιw mu’mkin. Eger n=1 bolsa, onda bag’ana matricag’a ha’m k=1 bolsa, onda sa’ykes qatar matricag’a iye bolamιz: ha’m
. Qatarlar sanι bag’analar sanιna ten’, yag’niy bolsa, onda ol (3) N n m a a a a a a a a a mn m m n n , , ,... , ,..., ,... , , ,... , 2 1 2 22 21 1 12 11 mn m m n n а а а а а а а а а ...
.. .......... .......... ...
... 2 1 2 22 21 1 12 11 n m mn m m n n a a a a a a a a a ...
. . . . . . . . . . . . ... ...
2 1 2 22 21 1 12 11
m m n n a a a a a a a a a ...
. . . . . . . . . . . . ... ...
2 1 2 22 21 1 12 11 0 ... 0 0 . . . . . . . . 0 ... 0 0 0 ...
0 0 0 n j m i a A ij , 1 ; , 1 , n j m i a A ij , 1 ; , 1 , 1 21 11 k a a a A n a a a A 1 12 11 , ... , ,
m nn n n n n a a a a a a a a a A ...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 kvadrat matricag’a iye bolamιz. (3) kvadrat matrιcasιnιn’ elementleri bas diagonal elementleri delinedi. Eger (3) matricasιnda bas diagonalιnda turg’an elementlerden basqa barlιq elementleri nolge ten’ bolsa, onda (4) diagonal matricag’a iye bolamιz. Dara jag’dayda (4) matricasιnda
bolsa, onda matrιcasι birlik matrιca dep ataladι. (3) kvadrat matrιcanιn’ elementlerinen duzilgen
anιqlawιshι A matricasιnιn’ anιqlawshι dep ataladι ha’m yamasa
ko’rinisinde belgilenedi. Eger A matrιcasιnιn’ anιqlawshι bolsa, onda A matrιcasι menshikli matrιca, al keri jag’dayda yag’niy, bolsa, A matrιcasι menshiksiz matrιca dep ataladι.
Meyli
ha’m
matricalarι berilgen bolsιn. Bul matrιcalardιn’ sa’ykes elmentleri qosιndιsιnan duzilgen ta’rtibli
matrιcasι A ha’m B matrιcasιnιn’ qosιndιsι dep ataladι ha’m A+B ko’rinisinde belgilenedi. nn a a a ,...,
, 22 11 nn a a a ...
0 0 . . . . . . . 0 ...
0 0 ... 0 22 11 1 ...
33 22 11 nn a a a a 1 ... 0 0 . . . . . . 0 ... 1 0 0 ...
0 1
nn n n n n a a a a a a a a a ...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 A det
A 0
0
...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 mn m m n n b b b b b b b b b B ...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 ] [
m mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a ...
. . . . . . . . . . . . . . . . . ... ... 2 2 1 1 2 2 22 22 21 21 1 1 12 12 11 11
A ha’m B matrιcasιnιn’ sa’ykes elmentleri ayιrmasιnan duzilgen ta’rtibli
matrιcasι A ha’m B matrιcalarιnιn’ ayιrmasι dep ataladι ha’m A-B ko’rinisinde belgilenedi.
Joqarιda aytιlg’anlarg’a muwapιq to’mendegi 1. A+0=0+A=A, 2. A+B=B+A sha’rtlerdin’ orιnlι ekenin ko’riw qιyιn emes, bunda 0- nolik matrιca. (3) matrιcasιnιn’ ha’r bir elementin sanιna ko’beytiriw na’tiyjesinde payda bolg’an
matrιcasι sanι menen A matrιcasιnιn’ ko’beymesi dep ataladι ha’m dep
belgilenedi. A ha’m B matrιcalarι ha’m qa’legen ha’m
sanlarι ushιn to’mendegi ten’likler orιnlι.
1.
2. ,
3. Meyli
ha’m
matricalarι berilgen bolsιn. A matrιcasιnιn’ - qatarιnιn’ elementleri elementlerin sa’ykes turde B matrιcasιnιn’ bag’anasιnιn’
elementlerine ko’beytirip , (5) qosιndιlardι payda etemiz. Bul sanlardan duzilgen - tartibli ] [ n m mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a ...
. . . . . . . . . . . . . . . . . ... ... 2 2 1 1 2 2 22 22 21 21 1 1 12 12 11 11
n m n n a a a a a a a a a A ...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 А , ) ( ) ( A A B A B A ) ( . ) ( A A A mn m m n n a a a a a a a a a A ...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 nk n n k k b b b b b b b b b B ...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 i in i i a a a . . ,. , 2 1 ) ,... 2 , 1 ( m i j jn j j a b b . . ,. , 2 1 ) ,... 2 , 1 ( k j nj in j i j i ij b a b a b a d ...
2 2 1 1 ) ,... 2 , 1 ; ,...
2 , 1 ( k j m i ] [ k m mk m m k k d d d d d d d d d ...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 matrιcasι berilgen A ha’m B matricalarιnιn’ ko’beymesi delinedi ha’m
ko’rinisinde belginedi. Demek
matrιcasιnιn’ ha’r bir elementi (5) ko’rinisindegi qosιndιdan ibarat boladι. A, B ha’m C matricalarι berilgen bolsιn. Onda bul matrιcalar ushιn to’mendegi sha’rtler orιnlι: 1. ,
, 3.
, 4.
(3) matricasιnιn’ qa’legen qatarιn ha’m qa’legen bag’anasιn alιp,
ta’rtibli kvadrat matrιca duzemiz. Bul kvadrat matrιcasιnιn’ anιqlawshι A matrιcasιnιn’ - ta’rtibli minorι dep ataladι. A matrιcasι ja’rdeminde payda etiw mu’mkin bolg’an barlιq minorlar arasιnda nolden o’zgeshe bolg’an en’ joqarι (ulken) ta’rtibli minordιn’ ta’rtibi A matrιcasιnιn’ rangi dep ataladι ha’m dep belgilenedi. Meyli
ta’rtibli
kvadrat matrιca berilgen bolsιn. Eger A matricasι menen ta’rtibli B matrιcasιnιn’ ko’beymesi birlik matrιcag’a ten’ bolsa, yag’niy bolsa, onda B matrιcasι A matrιcasιna keri matrιca dep ataladι ha’m ko’rinisinde belgilenedi.
birden bir boladι.
) ( ) ( ) ( C B A C B A A B B A .
A E E A k k )) , min( (
m k ] [ k k k rankA ] [ n n nn n n n n a a a a a a a a a A ...
. . . . . . . . ... ... 2 1 2 22 21 1 12 11 ] [
n E BA AB 1
Download 232.06 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling