3 The structures of simple solids


Download 207.23 Kb.
Pdf ko'rish
bet2/4
Sana09.12.2021
Hajmi207.23 Kb.
#179504
1   2   3   4
Bog'liq
Страницы из 1

a    b    c    

α    β    γ    None 

 Monoclinic 

  a  

≠   b  ≠   c ,   α  =  γ  = 90°,  β  ≠ 90°  

 

a    b    c    

β  


 One two-fold rotation axis and

/or a mirror plane 

 Orthorhombic 

  a  

≠   b  ≠   c ,   α  =  β  =  γ  = 90° 

  a    b    c  

 Three perpendicular two-fold axes and

/or mirror 

planes 

 Rhombohedral    a  

=  b  =  c ,   α  =  β  =  γ  ≠ 90°  

 

a    

α  

 One three-fold rotation axis 



 Tetragonal 

  a  

=  b  ≠   c ,   α  =  β  =  γ  = 90° 

  a    c  

 One four-fold rotation axis 

 Hexagonal 

  a  

=  b  ≠   c ,   α  =  β  = 90°,  γ  = 120°    a    c  

 One six-fold rotation axis 

 Cubic 


  a  

=  b  =  c ,   α  =  β  =  γ  = 90° 

  a  

 Four three-fold rotation axes tetrahedrally 

arranged 

a

a

a

a

a

a

b

c

c

a

a

b

c

β

a



b

γ

α



β

c

α

a



a

c

a

a

α

α



Cubic

Triclinic

Hexagonal

Tetragonal

Orthorhombic

Monoclinic

Rhombohedral

(trigonal)



120° 

   Figure  3.2  

The seven crystal systems.    

a

b



c

(+1,0,0)


O

   Figure  3.3  

Lattice points describing the 

translational symmetry of a primitive cubic 

unit cell. The translational symmetry is just 

that of the unit cell; for example the a lattice 

point at the origin, O, translates by (

+1,0,0) 


to another corner of the unit cell.    

a

b



c

(+½,½,½)


O

   Figure  3.4  

Lattice points describing the 

translational symmetry of a body-centred 

cubic unit cell. The translational symmetry 

is that of the unit cell and (

+½,+½,+½), so 

a lattice point at the origin, O, translates to 

the body centre of the unit cell.    

a

b



c

O

(+½,0,½)



   Figure  3.5  

Lattice points describing the 

translational symmetry of a face-centred 

cubic unit cell. The translational symmetry 

is that of the unit cell and (

+½,+½,0) , 

(

+½,0,+½), and (0,+½,+½) so a lattice 



point at the origin, O, translates to points in 

the centres of each of the faces.    

2523_Ch03.indd   67

2523_Ch03.indd   67

10/1/2013   7:03:48 PM

10/1/2013   7:03:48 PM




68

3  The structures of simple solids

 Thus, for the face-centred cubic lattice depicted in  Fig.  3.5   the total number of lattice 

points in the unit cell is  (

) (

)

8



6

4

1



8

1

2



×

×

+



=    . For the body-centred cubic lattice depicted in 

 Fig.  3.4  , the number of lattice points is  (

) (

)

1 1



8

2

1



8

×

×



+

=    .  


   E X A MPLE  3.1 

Identifying lattice types   

  Determine the translational symmetry present in the structure of cubic ZnS ( Fig.  3.6  ) and identify the 

lattice type to which this structure belongs.  




Download 207.23 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling