4-Ma’ruza. To’g’ri chiziqda dekart koordinatalari. Fazoda va tekislikda dekart koordinatalari. Analitik geometriyaning sodda masalalari. Ikki nuqta orasidagi masofa. Kesmani berilgan nisbatda bo’lish. Afin koordinatalari


Download 121.58 Kb.
Sana27.09.2019
Hajmi121.58 Kb.
    Навигация по данной странице:
  • III IV ch-1

4-Ma’ruza. To’g’ri chiziqda dekart koordinatalari. Fazoda va tekislikda dekart koordinatalari. Analitik geometriyaning sodda masalalari. Ikki nuqta orasidagi masofa. Kesmani berilgan nisbatda bo’lish. Afin koordinatalari. Qutb koordinatalar sistemasi. Fazoda silindrik va sferik koordinatalar sistemasi.

Koordinatalar-ma’lum tartibda olingan va nuqtaning chiziqdagi, tekislikdagi, sirtdagi yoki fazodagi vaziyatini harakterlaydigan sonlardir. Nuqtaning koordinatalari tushunchasidan foydalanib, analitik geometriya fani geometrik shakllarni algebraik analiz yordamida tekshiradi. Analitik geometriyaning vazifasi: birinchidan geometrik obrazlarni nuqtalarning geometrik o‘rni deb qarab, shu obrazlarning umumiy xossalariga asosan ularni tenglamalarini tuzadi va ikkinchidan, tenglamalarning geometrik ma’nosini aniqlab, bu tenglamalar bilan berilgan geometrik obrazlarni shaklini, xossalarini va tekislikda yoki fazoda joylashishini o‘rganadi.

Ravshanki, chiziqlar nuqtalarning geometrik o‘rnidir, sirtlarni esa chiziqlardan va jismlarni sirtlardan tashkil tongan deb qarash mumkin.

Shuning uchun geometrik shakllarni tekislikda yoki fazoda nuqtalarning o‘rni deb qarash mumkin.

Analitik geometriyada nuqtaning chiziqdagi, tekislikdagi va fazodagi o‘rni sonlar yordamida aniqlanadi. Nuqtaning o‘rnini aniqlovchi sonlar uning koordinatalari deyiladi.

Endi koordinatalar sistemalari bilan tanishamiz:

Musbati yo‘nalishi tanlab olingan l to‘g‘ri chiziq o‘q deb ataladi. O‘qni yo‘nalishi odatda strelka bilan ko‘rsatiladi.

l


Ta’rif. Agar to‘g‘ri chiziqda koordinatalar boshi deb ataluvchi O nuqta, musbat yo‘nalish va masshtab birligi tanlab olingan bo‘lsa.


u holda to‘g‘ri chiziqda Dekart *) koordina-

. .M l talar sistemasi berilgan deyiladi. Bu

O to‘g‘ri chiziqdagi M nuqtani to‘la aniqlash uchun, undan O nuqtagacha bo‘lgan masofa OM kesmaning uzunligi va yo‘nalishi berilgan bo‘lishi kerak. Kesmaning yo‘nalishi + yoki – ishoralar orqali, masalan O nuqtadan o‘ng tomonga ko‘yilsa musbat, chap tomonga qo‘yilsa manfiy deb qabul qilingan. SHu qabul qilingan shartda, to‘g‘ri chiziqning har bir nuqtasi yagona bir sonni ifodalaydi. Bu son qaralayotgan nuqtaning abssissasi (koordinatasi) deyiladi va x harfi bilan belgilanadi, xuddi shuningdek, harbir haqiqiy songa to‘g‘ri chiziqda yagona nuqta mos keladi. Ya’ni to‘g‘ri chiziq ustidagi nuqtalar va haqiqiy sonlar to‘plami orasida bir qiymatlii moslik o‘rnatiladi.

Abssissasi x ga teng M nuqtani M(x) ko‘rinishda belgilanadi. (M1(1), M2(2), M3 (-2), M4(-5), M5(0)) nuqtalarni yasang.

Analitik geometriyada nuqta berilgan deganda, uning koordinatasi berilgani tushuniladi.



Tekislikdagi nuqtaning koordinatalari

Ta’rif: Tekislikda to‘g‘ri burchakli koordinatalar sistemasi berilgan deyiladi, agar ikkita o‘zaro perpendikulyar o‘q, ularni kesishish nuqtasi

y O (sanoq boshi) va masshtab birligi berilgan

bo‘lsa. Odatda bu o‘qlarni biri gorizontal,

M ikkinchisi vertikal joylashgan bo‘ladi.

( R. Dekart, fransuz olimi (1596-1650))


II I gorizantal o‘qni abssissalar o‘qi (Ox), x vertikal o‘qni ordinatalar (Oy) o‘qi deyiladi.

III IV ch-1

Bu o‘qlarni ikkalasi koordinata o‘qlari, ularning kesishgan nuqtasi (sanoq boshi) koordinata boshi deyiladi. Koordinatalar boshi OX o‘q uchun ham, OY o‘q uchun ham sanoq boshlanadigan nuqta hisoblanadi. O‘qlarni har birida musbat yo‘nalishlar strelkalar bilan ko‘rsatiladi. Nuqtaning tekislikdagi o‘rni anna shu koordinatalar sistemasiga nisbatan aniqlanadi.


Tekislikda biror M nuqtaning (ch-1) o‘rini aniqlash uchun bu nuqtadan, OX va OY o‘qlariga perpendikulyar tushiramiz va koordinati o‘qlari bilan kesishish nuqtalarini R va Q bilan belgilaymiz.

M nuqta berilgan bo‘lsa, ravshanki R va Q nuqtalar aniqlanadi va R,Q ma’lum bo‘lsa, M nuqtani o‘rnini aniqlash oson. Ma’lumki, kesmalarning uzunliklari biror uzunlik birligi bilan o‘lchanadi. SHu tufayli koordinata o‘qlarida masshtab birligi tanlab olingan bo‘ladi: x=or, u=oQ deb belgilasak, bu sonlar yordamida tekislikda faqat bitta M nuqtani topamiz; x soni M nuqtani abssissasi, u soni esa uni ordinatasi deyiladi va M(x;u) ko‘rinishda yoziladi. Masalan M (4;-5) bo‘lsa x=4, u=-5 ekanini bildiradi.

Nuqta berilgan deymiz, agar uning koordinatalari berilgan bo‘lsa, koordinata o‘qlari tekislikni to‘rt bo‘lakka ajratadi, bu bo‘laklar choraklar deyiladi (ch-1).
Fazoda to‘g‘ri burchakli koordinatalar sistemasi

Fazoda nuqtaning o‘rnini aniqlash uchun bir-biri bilan to‘g‘ri burchak hosil qilib kesishadigan uchta H,Q,R tekisliklarni qaraymiz. Bu tekisliklarni koordinata tekisliklari deb ataladi. R,Q,R tekisliklar OX,OY,OZ to‘g‘ri chiziqlar bo‘yicha kesishadi, bu chiziqlar koordinata o‘qlari deyiladi va OX abssissa o‘qi, OY ordinati o‘qi va OZ applikatalar o‘qi deb ataladi. Bu uch o‘qning kesishgannuqtasi O koordinatalar boshi deyiladi. Koordinata tekisliklari o‘zaro kesishib fazoni sakkiz qismga (bo‘lakka) ajratadi. Bu bo‘laklar oktantlar deyiladi.

Bu keltirilgan koordinata sistemasi fazoda to‘g‘ri burchakli Dekart koordinata sistemasi deyiladi. Fazoda to‘g‘ri burchakli Dekart koordinata sistemasini qisqacha quyidagicha ta’riflash mumkin.

Ta’rif: Fazoda to‘g‘ri burchakli Dekart koordinatalar sistemasi berilgan deyiladi, agar 3ta o‘zaro perpendikulyar uq, ularni kesishgan nuqtasi O va masshtab birligi berilgan bo‘lsa. Fazoda har qanday nuqtaning o‘rni koordinata sistemasiga nisbatan 3ta son bilan aniqlanadi. Fazoda biror M nuqta va ma’lum masshtab birligi berilgan bo‘lsin (ch-4). M nuqtadan koordinata o‘qlariga perpendikulyarlar tushiramiz va ularni koordinata o‘qlari bilan kesishgan nuqtalarini

R,Q,S bilan belgilaymiz. Agar

Z R,Q,S nuqtalar berilgan bo‘lsa

S V M nuqtani topish mumkin. De-

mak M nuqtani fazodagi vaziya-

tini X=OR, Y=OQ va Z=OS


о
S M miqdorlar belgilaydi va ular

U M nuqtaning koordinatlari,

Q aniqrog‘i x M nuqtaning

abssissasi, U ordinatasi va

R A Z aplekatasi deyladi. Agar

X fazoda biror, M (x;u;z) nuqta

berilgan bo‘lsa, uni fazodagi vaziyatini quyidagicha aniqlash mumkin

(ch-5) OX o‘qidan x ni topamiz, OY o‘qidan uni topamiz. R nuqtadan OY o‘qiga parallel qilib, Q nuqtadan OX o‘qiga parallel qilib to‘g‘ri chiziqlar o‘tkazamiz va ularni kesishgan nuqtasini Q1 bilan belgilaymiz. O1 nuqtadan OZ o‘qiga parallel qilib uzuq chiziq o‘tkazamiz.

SHundan keyin z ni ishorasiga qarab, agar z > 0, bo‘lsa O1dan yuqoriga qarab

Z uzunliga z bo‘lgan O1Z va Z < 0 bo‘lsa

O1 dan pastga qarab uzunligi O1Z

. Z kesmi ajratamiz. O1Z kesmani oxirgi

Q y nuqtasi biz izlayotgan M nuqtadir.



O M (5;6;3) nuqtani yasaylik: xq5 va uq6

x x kesmalarni topib, ularni oxiridan

R O1 OX va OY o‘qiga parallel qilib uzuq

x y chiziqlar o‘tkazamiz, so‘ngri ularni

r-5 kesishish nuqtasi O1dan OZ o‘qiga parallel qilib uzuq chiziqlar o‘tkazamiz. Z=3>0, bo‘lganidi. O1 nuqtadan yuqorigi qarab 3 birlik o‘lchaymiz, shu kesmani oxiri, ya’ni O1M kesma hosil bo‘ladi. Ana shu topilgan M nuqta biz izlayotgan nuqtadir

Takidlaymizki, M1 (x;u) nuqta tekislikda,

M2 (x;u;z) nuqta fazoda berilgan bo‘lsa.

M1ni qaysi chorakda, M2 esa qaysi aktantda

ekanligini quyidagi j-1 va j-2 jadvaldan

foydalanib aniqlash mumkin.

uqR M Q u

o

x=5 x=5



x O1

у=6 ch-6



Чораклар (х;у) нукта коор иш

Х у


I х>0 y>0

II x<0 y>0

III x<0 y<0

IV x>0 y<0



Октантлар х;у;z) нуқта коор иш

Х У Z


I х>0 y>0 z>0

II x<0 y>0 z>0

III x<0 y<0 z>0

IV x>0 y<0 z>0

V х>0 y>0 z<0

VI x<0 y>0 z<0

VII x<0 y<0 z<0

VIII x>0 y<0 z<0 z




Takidlaymizki, koordinatalar sistemasi faqatgina shu ko‘rsatilgan koordinatalar sistemasi emas, balki cheksiz ko‘pdir. Masalan tekislikda Dekart koordinatalar sistemasida OX va OY o‘qlari perpendikulyar bo‘lmasa, masalan burchak tashkil qilsa, bunday koordinata sistemasiga affin koordinata sistemasi deyiladi.


Amalda qutb, egri chiziqli, sferik va silindrik koordinata sistemalari keng qo‘llaniladi.

Misol uchun qutb koordinatalar sistemasi bilan tanishaylik. Tekislikni ixtiyoriy O nuqtasidan OX o‘qini o‘tkazimiz. Bu vaqtda tekislikdagi M nuqtaning vaziyati ikki miqdor bilan, O nuqtadan M

Nuqtagacha bo‘lgan masofa va

M r ning OX o‘qi bilan tashkil kilgan



Burchagi orqali aniqlanadi. O

Nuqta-qutb, OX o‘q qutb o‘qi, r esa

O \ x M nuqtaning radius vektori,

esa qutb burchagi deyiladi. r va

sonlar M nuqtaning qutb koordinatalari deyiladi va M(r; ) ko‘rinishda yozilib, M (x;у)-M(r; )

u Agar to‘g‘ri burchakli Dekart koordinatalar sistemasini

koordinata boshi qutb bilan OX o‘qi

qutb o‘qi bilan ustma ust tushsa

u nuqtaning to‘g‘ri burchakli

x Dekart koordinatalari va

o x qutb koordinatalar orasida

quyidagi sodda boglanish mavjud:

x=r Cos .y=rSin . r= . =arc tg y/x


M: M(5;5) nuqtani qutb koordinatalar sistemasidagi koordinatalarini toting,

Echish: r= = =5 ; =arstg u/x=arctg 1=45=



Demak M(5;5)= M

Do'stlaringiz bilan baham:


Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2019
ma'muriyatiga murojaat qiling