4-MAVZU
Mavzu: Hosila tushunchasi va misollar. Hosilani hisoblash. Yuqori tartibli hosila. Oshkormas va parametrik funksiya hosilalarini hisoblash. Teskari funksiya hosilasi.
Ta’rif. Agar y=f(x) funksiyaning x=xo nuqtadagi orttirmasi u ning argument orttirmasi x ga nisbatining x nolga intilganda chekli limiti mavjud bo’lsa, bu limit f (x) funksiyaning x o nuqtadagi xosilasi deb ataladi va yo yoki yo(x) yoki f(xo) yoki yoki ko’rinishlarda belgilanadi.
Demak ta’rifga ko’ra f o(xo)= = .
Misollar.
1.y=f(х)=с=cоnst bo’lsin. y=f(х+х)-f(х)=с-с=0 yо==0
2.y=f(х)=х bo’lsin. ==1; y о==1
3.y=х2 funksiyaning х=3 nuqtadagi hosilasini toping: y+y=(3+х)2=9+6х+(х)2
yо===(6+х)=6;
4.y=y(х)=,(х>0)
yо====
Yig’indi, ko’paytma va bo’linmaning xosilasi.
Teorema. Agar u(x) va v(x) funksiyalar x(a,b) nuqtada va xosilalarga ega bo’lsa, u xolda ularning algebraik yisindisi, ko’paytmasi va bo’linmasi shu x nuqtada xosilaga ega bo’lib, quyidagi formulalar bo’yicha topiladi:
(u±v)o=uo±vo;
(uv)o=uov+uvo
() o = (v(x) 0)
Teskari funksiyaning xosilasi.
Teskari funksiyaning mavjudligi xaqidagi teoremani isbotsiz keltirib o’taylik.
1-teorema. Agar y=f(x) funksiya [a,b] kesmada aniqlangan va uzluksiz bo’lib, shu kesmada o’suvchi (kamayuvchi) bo’lsa, bu funksiyaga teskari bo’lgan x=(y) funksiya mavjud bo’ladi. y=f(x) ga teskari bo’lgan funksiyani topish uchun tenglamani x ga nisbatan yechish kerak.
2-teorema. Agar y=f(x) funksiya x nuqtada chekli fo(x) 0 xosilaga ega bo’lsa, u xolda bu funksiyaga teskari bo’lgan x=(y) funksiya xam shu nuqtada o(y)= xosilaga ega bo’ladi.
Murakkab funksiyaning xosilasi.
Agar u o’zgaruvchi y o’zgaruvchining y=f(u) funksiyasi bo’lib, u esa o’z navbatida x ning funksiyasi u=(x) bo’lsa, u xolda y=f((x)) funksiyani x ning murakkab funksiyasi deyiladi.
Teorema. Agar u=(x) funksiya o’zgaruvchi x nuqtada yxo=o(x) xosilaga, y=f(u) funksiya esa o’zgaruvchi u bo’yicha yo=f o(u) xosilaga ega bo’lsa, u xolda y=f((x)) murakkab funksiya xam shu x nuqtada
hosilaga ega bo’ladi.
Parametrik ko’rinishda berilgan funksiyaning xosilasi.
Agar tenglamamiz parametrik ko’rinishda berilgan bo’lib, (t), (t) funksiyalar differensiallanuvchi va o(t)0 bo’lsa yaoni formula o’rinli bo’ladi.
Do'stlaringiz bilan baham: |