5-ma’ruza. Mashinali o’qitishda chiziqli regressiya masalasi. Bir o’zgaruvchili chiziqli regressiya
p men = e(β0+β1x ) va 1+e(β0+β1x)
Download 43.39 Kb.
|
prezentatsiya 9
p men = e(β0+β1x ) va 1+e(β0+β1x)Ushbu tenglamani quyidagi transformatsiya bilan chiziqlash mumkinLogit (p ) = ln (p1-p) = β0+β1xChap tomon logit deb ataladi, ya'ni "logistika birligi" degan ma'noni anglatadi. Bundan tashqari, log stavkalari deb ham ataladi. Bunday holda, bizning modelimiz log miqyosida qiymatlarni hosil qiladi va yuqoridagi logistik tenglama bilan biz qiymatlarni 0 va 1 oralig'ida olamiz. Endi savol qoladi: "Bizning o'quv to'plamimiz uchun eng yaxshi parametrlarning taxminlari qanday". Biz maksimal ehtimollik doirasi bo'yicha eng yaxshi parametrlarni baholash statistik modelning haqiqatan ham kuzatilgan ma'lumotlarni ishlab chiqarish ehtimolini maksimal darajaga ko'tarishdir. Siz ushbu moslamani kuzatilgan ma'lumotlar to'plamiga ehtimollik taqsimoti deb o'ylashingiz mumkin. Ehtimollarni taqsimlash parametrlari kuzatilayotgan ma'lumotlarning ushbu taqsimotdan kelib chiqish ehtimolini maksimal darajada oshirishi kerak. Agar biz Gauss taqsimotidan foydalangan bo'lsak, kuzatilgan ma'lumotlar ushbu Gauss taqsimotidan olinishi yanada aniqroq bo'lguncha o'rtacha va dispersiya parametrlarini o'zgartirgan bo'lar edik.Chap tomon logit deb ataladi, ya'ni "logistika birligi" degan ma'noni anglatadi. Bundan tashqari, log stavkalari deb ham ataladi. Bunday holda, bizning modelimiz log miqyosida qiymatlarni hosil qiladi va yuqoridagi logistik tenglama bilan biz qiymatlarni 0 va 1 oralig'ida olamiz. Endi savol qoladi: "Bizning o'quv to'plamimiz uchun eng yaxshi parametrlarning taxminlari qanday". Biz maksimal ehtimollik doirasi bo'yicha eng yaxshi parametrlarni baholash statistik modelning haqiqatan ham kuzatilgan ma'lumotlarni ishlab chiqarish ehtimolini maksimal darajaga ko'tarishdir. Siz ushbu moslamani kuzatilgan ma'lumotlar to'plamiga ehtimollik taqsimoti deb o'ylashingiz mumkin. Ehtimollarni taqsimlash parametrlari kuzatilayotgan ma'lumotlarning ushbu taqsimotdan kelib chiqish ehtimolini maksimal darajada oshirishi kerak. Agar biz Gauss taqsimotidan foydalangan bo'lsak, kuzatilgan ma'lumotlar ushbu Gauss taqsimotidan olinishi yanada aniqroq bo'lguncha o'rtacha va dispersiya parametrlarini o'zgartirgan bo'lar edik.Download 43.39 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling