y'=x/(x+y)
y(0)=1,
Xϵ [0,1]
|
y'-2y=3ex y(0,3)=1,415 Xϵ [0,1;0,5]
|
y'=x+y2 y(0)=0,
Xϵ [0;0,3]
|
y'=y2-x2
y(1)=1, Xϵ[1;2]
|
y'=x2+y2
y(0)=0.27
Xϵ [0;1]
|
|
6
|
7
|
8
|
9
|
10
|
|
y'+xy(9-y2)=0
y(0)=0.5
Xϵ [0;1]
|
y'=x2-xy+y2 y(0)=0.1
Xϵ [0;1]
|
y'=(2y-x)/y y(1)=2
Xϵ [1;2]
|
y'=x2+xy+y2+1 y(0)=0 Xϵ [0;1]
|
y'+y=x3 y(1)=-1
Xϵ [1;2]
|
|
11
|
12
|
13
|
14
|
15
|
|
y'=xy+ey y(0)=0 Xϵ [0;0.1]
|
y'=2xy+x2 y(0)=0 Xϵ [0;0.5]
|
y'=x+ y(0)=1, [0;1]
|
y'=ex-y2 y(0)=0 Xϵ [0;0.4]
|
y'=2x+cosy y(0)=0 Xϵ [0;0.1]
|
|
16
|
17
|
18
|
19
|
20
|
|
y'=x3+y2 y(0)=0.5 Xϵ [0;0.5]
|
y'=xy3-y y(0)=1 Xϵ [0;1]
|
y'=y2ex-2y y(0)=1 Xϵ [0;1]
|
y'= y(1)=0,
Xϵ [1;2]
|
y'= y(1)=1,
Xϵ [1;2]
|
|
21
|
22
|
23
|
24
|
25
|
|
y'=excosy/x y(1)=1 ,
Xϵ [1;2]
|
y'=exsiny/x y(1)=1 Xϵ [1;2]
|
y'cosx-ysinx=2x y(0)=0 Xϵ [0;1]
|
y’=ytgx- y(0)=0 ,
Xϵ [0;1]
|
y'+ycosx=cosx y(0)=0
Xϵ [0;1]
|
|
26
|
27
|
28
|
29
|
30
|
|
y’=
y(0)=0,
Xϵ [0;1]
|
y'=(9+ )2 y(1)=1,
Xϵ [1;2]
|
xy'- -x=0 y(1)=1/2,
Xϵ [1;2]
|
y'= (9+lny-lnx) y(1)=e ,
Xϵ [1;2]
|
y3xdx=(x2y+2)dy y(0.348)=2 Xϵ [0;1]
|
|
31
|
32
|
33
|
34
|
35
|
|
y'=x/(x+y)
y(0)=3,
Xϵ [0,1]
|
y'-2y=3ex y(0,3)=1,4
Xϵ [0,1;0,5]
|
y'=x+y2 y(1)=0,
Xϵ [0;0,3]
|
y'=y2-x2
y(1)=0,
Xϵ [1;2]
|
y'=x2+y2
y(0)=2
Xϵ [0;1]
|
|
36
|
37
|
38
|
39
|
40
|
|
y'+xy(9-y2)=0
y(0)=5
Xϵ [0;1]
|
y'=x2-xy+y2 y(0)=1
Xϵ [0;1]
|
y'=(2y-x)*y y(0)=2
Xϵ [1;2]
|
y'=x2+xy+y2+1 y(0)=5
Xϵ [0;1]
|
y'+y=x3 y(1)=-2
Xϵ [1;2]
|
|
41
|
42
|
43
|
44
|
45
|
|
y'=xy+ey y(0)=0 [0;0.1]
|
y'=2xy+x2 y(0)=0 [0;0.5]
|
y'=x+ y(0)=1, [0;1]
|
y'=ex-y2 y(0)=0 [0;0.4]
|
y'=2x+cosy y(0)=0 [0;0.1]
|
|
46
|
47
|
48
|
49
|
50
|
|
y'=x3+y2 y(0)=0.5 Xϵ [0;0.5]
|
y'=xy3-y y(0)=1 Xϵ [0;1]
|
y'=y2ex-2y y(0)=1 Xϵ [0;1]
|
y'= y(1)=0, [1;2]
|
y'= y(1)=1, [1;2]
|
|
51
|
52
|
53
|
54
|
55
|
|
y'=excosy/x y(1)=1 ,
Xϵ [1;2]
|
y'=exsiny/x y(1)=1 Xϵ [1;2]
|
y'cosx-ysinx=2x y(0)=0 Xϵ [0;1]
|
y’=ytgx- y(0)=0 ,
Xϵ [0;1]
|
y'+ycosx=cosx y(0)=0 Xϵ [0;1]
|
|
56
|
57
|
58
|
59
|
60
|
|
y’=
y(0)=0,
Xϵ [0;1]
|
y'=(9+ )2 y(1)=1,
Xϵ [1;2]
|
xy'- -x=0 y(1)=1/2,
Xϵ [1;2]
|
y'= (9+lny-lnx) y(1)=e ,
Xϵ [1;2]
|
y3xdx=(x3y+2)dy y(0.48)=2 Xϵ [0;1]
|
|
61
|
62
|
63
|
64
|
65
|
|
y'=x/(x+y)
y(0)=1,
Xϵ [0,1]
|
y'-2y=3ex y(0,3)=1,15
Xϵ [0,1;0,5]
|
y'=x+y2 y(0)=0,
Xϵ [0;0,3]
|
y'=y2-x2
y(1)=1,
Xϵ [1;2]
|
y'=x2+y2
y(0)=0.7
Xϵ [0;1]
|
|
66
|
67
|
68
|
69
|
70
|
|
y'+xy(9-y2)=0
y(0)=0.5
Xϵ [0;1]
|
y'=x2-xy+y2 y(0)=0.1
Xϵ [0;1]
|
y'=(2y-x)/y y(1)=2
Xϵ [1;2]
|
y'=x2+xy+y2+1 y(0)=0
Xϵ [0;1]
|
y'+y=x3 y(1)=-1
Xϵ [1;2]
|
|
71
|
72
|
73
|
74
|
75
|
|
y'=xy+ey y(0)=0 Xϵ [0;0.1]
|
y'=2xy+x2 y(0)=0
Xϵ [0;0.5]
|
y'=x+ y(0)=1,
Xϵ [0;1]
|
y'=ex-y2 y(0)=0 Xϵ [0;0.4]
|
y'=2x+cosy y(0)=0 Xϵ [0;0.1]
|
|
76
|
77
|
78
|
79
|
80
|
|
y'=x3+y2 y(0)=0.5 Xϵ [0;0.5]
|
y'=x*y3-y y(0)=1 Xϵ [0;1]
|
y'=y2ex-2y y(0)=1 Xϵ [0;1]
|
y'= y(1)=0,
Xϵ [1;2]
|
y'= y(1)=1,
Xϵ [1;2]
|
|
81
|
82
|
83
|
84
|
85
|
|
y'=excosy/x y(1)=1 ,
Xϵ [1;2]
|
y'=exsiny/x y(1)=1 Xϵ [1;2]
|
y'cosx-ysinx=2x y(0)=0 Xϵ [0;1]
|
y’=ytgx- y(0)=0 ,
Xϵ [0;1]
|
y'+ycosx=cosx y(0)=0 Xϵ [0;1]
|
|
86
|
87
|
88
|
89
|
90
|
|
y’=
y(0)=0,
Xϵ [0;1]
|
y'=(9+ )2 y(1)=1,
Xϵ [1;2]
|
xy'- -x=0 y(1)=1/2,
Xϵ [1;2]
|
y'= (9+lny-lnx) y(1)=e ,
Xϵ [1;2]
|
y3xdx=(x2y+2)dy y(0.8)=2 Xϵ [0;1]
|
|