A L g e b r a belgilar va belgilashlar


Logarifmik funksiyalarning xossalari va grafigi


Download 0.8 Mb.
Pdf ko'rish
bet11/18
Sana24.10.2020
Hajmi0.8 Mb.
#136272
1   ...   7   8   9   10   11   12   13   14   ...   18
Bog'liq
formula


Logarifmik funksiyalarning xossalari va grafigi

Logarifmik funksiyaning ko'rinishi:

(

)



log

,    0,   1,   0



a

y

x

a

a

x

=

>



¹

>

.



1. Aniqlanish sohasi:

(

)



( )

0;

D y

=

+ ¥


 barcha musbat sonlar to'plami.

2. Qiymatlar sohasi:

(

)

( )



;

E y

= -¥ + ¥


  barcha haqiqiy sonlar to'plami.

3. Logarifmik  funksiya  aniqlanish  sohasida  agar

1

a

>

  bo'lsa,



o'suvchi. Agar

0

1



a

< <

  bo'lganda kamayuvchi.

4. Agar

1

a



>

  bo'lsa,  logarifmik  funksiya

1

x

>   da musbat

     qiymatlar,

0

1



x

< <

  da esa manfiy qiymatlar qabul qiladi.

5. Agar

0

1



a

< <

  bo'lsa, logarifmik funksiya 0

1

x

< <  da musbat

     qiymatlar,

1

x

>    da esa manfiy qiymatlar qabul qiladi.

6.

log


a

y

x

=

 logarifmik funksiya juft ham, toq ham, davriy ham emas.



7.  Logarifmik funksiyaning grafigi

(1; 0)


  nuqtadan  o’tadi.

Click here to buy

A

B

B

Y

Y

PD

F Transfo

rm

er

2

.0

w

w

w .A

B B Y Y.

c o

m

Click here to buy

A

B

B

Y

Y

PD

F Transfo

rm

er

2

.0

w

w

w .A

B B Y Y.

c o

m

43

8.

(



)

log


,    0,   1,   0

a

y

x

a

a

x

=

>



¹

>

 funksiyaning grafigi:



(

)

( )



0;

D y

=

+ ¥



,

(

)



( )

;

E y

= -¥ + ¥

.

Logarifmik   tenglamalar

Ushbu

(

)



log   

0,  1,


a

x

b

a

a

b

R

=

>



¹

Î

 ko`rinishdagi



tenglamalarga sodda logarifmik tenglama diyiladi.

Yechishda qo’llaniladigan asosiy ekvivalent almashtirishlar:

1.

log



,

0 (


1,

0)

b



a

x

b

x

a

x

a

a

= Û =


>

¹

>



.

2.

log



( )

( )


,

( )


0,

b

a

f x

b

f x

a

f x

b

R

= Û


=

>

Î



(

1,

0)



a

a

¹

>



.

3.

( )



( )

0,

( )



0,

( )


1,

log


( )

( )


( ).

x

b

f x

x

x

f x

b

f x

x

j

j



j

j

>



>

¹

ìï



= Û í

=

ïî



4.

( )


( )

0 ,     0 ,     1,

lo g

( )


( )

( )


.

a

x

f

x

a

a

f

x

x

f

x

a

j

j



>

>

¹



ìï

=

Û í



=

ïî

5.



( )

0,    


( )

0,   0,   1,

log

( )


log

( )


( )

( ).


a

a

f x

g x

a

a

f x

g x

f x

g x

>

>



>

¹

ì



=

Û í


=

î

6.



( )

( )


( ) 0,

( ) 0,


log

log


( ) 1,  0,    

( ) 1,  0,

( )

( );


( )

( ).


f x

g x

f x

g x

A

A

f x

A

yoki

g x

A

f x

g x

f x

g x

>

>



ì

ì

ï



ï

=

Û



¹

>

¹



>

í

í



ï

ï

=



=

î

î



7.

og

( )



l

( )


0,

( )


0,

( )


0,

1,

( )



( ).

g x

a

f x

g x

f x

a

a

a

f x

g x

>

>



ì

ï

=



Û

>

¹



í

ï

=



î

8.

(



)

( )


( )

0,

  ( )



0,

log


( )

log


( )

log


( )  0,

1

( )



( )

.

a



a

a

f x

g x

f x

g x

m x

a

a

f x

g x

m x

>

>



ìï

+

=



>

¹

Û í



×

=

ïî



Click here to buy

A

B

B

Y

Y

PD

F Transfo

rm

er

2

.0

w

w

w .A

B B Y Y.

c o

m

Click here to buy

A

B

B

Y

Y

PD

F Transfo

rm

er

2

.0

w

w

w .A

B B Y Y.

c o

m

44

9.

(



)

(

)



2

1

( )



0,

2

1 log



( )

log


( )

 

 0,



1,

( )


( ).

a

a

n

g x

n

f x

g x

a

a

n

N

f

x

g x

+

>



ìï

+

=



>

¹

Î



Û í

=

ïî



10.

(

)



2

( )


0,

2 log


( )

log


( )  0,

1,

( )



( ).

a

a

n

f x

n

f x

g x

a

a

n

N

f

x

g x

>

ìï



=

>

¹



Î

Û í


=

ïî

11.



(log

)

0,   0,  1



log

,  


( )

0.

a



a

f

x

a

a

x

t

f t

=

>



¹ Û

=

=



12.

log


log

log


,  0,

0,

0,  1,



1,

1,

0



a

b

c

x

x

x

d

a

b

c

a

b

c

x

+

+



=

>

>



>

¹

¹



¹

> Û


log

log


log

.

log



log

a

a

a

a

a

x

x

x

d

b

c

Û

+



+

=

Logarifmik   tengsizliklar



Logarifmik tengsizliklar ushbu ekvivalent almashtirish

yordamida yechiladi:

1.

0



1,

lo g


( )

( )


0 ,

( )


.

a

b

a

f x

b

f x

f x

a

ì < <


ï

³

Û



>

í

ï



£

î

  2.



1,

lo g


( )

( )


0,

( )


.

a

b

a

f x

b

f x

f x

a

ì >


ï

³

Û



>

í

ï



³

î

3.



0

1,

( )



0,

1,

( )



0,

log


( )

log


( )

( )


0,

( )


0,

( )


( );

( )


( ).

a

a

a

g x

a

g x

f x

g x

f x

f x

f x

g x

f x

g x

<

<

>

>



>

ì

ì



ï

ï

<

Û

>

>



í

í

ï



ï

>

<

î

î

U



4.

[

]



[

]

( )



0

( )


1,

( )


1,

lo g


( )

( )


0,        

( )


0,

( )


( )

;

( )



( )

.

f x



a

a

f x

f x

g x

a

g x

g x

g x

f x

g x

f x

ì

ì



<

<

>

ï



ï

ï

ï



<

Û

>



>

í

í



ï

ï

>



<

ï

ï



î

î

U



5.

( )


0

( )


1,

( )


1,

lo g


( )

0

0



( )

1

( )



1 .

f

x

f

x

f

x

g x

g x

g x

<

<

>

ì



ì

>

Û í



í

<

<

>

î



î

U

6.



( )

0

( )



1,

( )


1,

lo g


( )

0

( )



1

0

( )



1 .

f

x

f x

f x

g x

g x

g x

<

<

>

ì



ì

<

Û í


í

>

<



<

î

î



U

7.

( )



0

( )


1,

( )


1,

lo g


( )

0

0



( )

1

( )



1 .

f

x

f x

f

x

g x

g x

g x

<

<

>

ì



ì

³

Û í



í

<

£

³



î

î

U



8.

( )


0

( )


1,

( )


1,

lo g


( )

0

( )



1

0

( )



1 .

f x

f x

f x

g x

g x

g x

<

<

>

ì



ì

£

Û í



í

³

<

£

î

î



U

9.

( )



( )

( )


1,

( )


0 ,

lo g


( )

lo g


( )

( )


0 ,  

0

( )



1,

( )


( );

( )


( ).

x

x

x

f x

f x

g x

g x

x

f x

g x

f x

g x

j

j



j

j

>



>

ì

ì



ï

ï

>



Û

>

<



<

í

í



ï

ï

>



<

î

î



U

Click here to buy

A

B

B

Y

Y

PD

F Transfo

rm

er

2

.0

w

w

w .A

B B Y Y.

c o

m

Click here to buy

A

B

B

Y

Y

PD

F Transfo

rm

er

2

.0

w

w

w .A

B B Y Y.

c o

m

45

10.


( )

(

)



( )

1,

( )



0 ,

lo g


( )

lo g


( )

( )


0 ,  

0

( )



1,

( )


( ) ;

( )


( ) .

x

x

x

g x

f

x

g x

f

x

x

f

x

g x

f

x

g x

j

j



j

j

>



>

ì

ì



ï

ï

£



Û

>

<



<

í

í



ï

ï

£



³

î

î



U

T R I G O N O M E T R I Y A

Boshlang’ich   tushunchalar

1.

0



a

-gradusdan radianga o’tish:

1 8 0

r a d

p

a



a

=

×



o

o

.



2.

rad

a

-radiandan gradusga o’tish:



1 8 0

r a d

a

a



p

=

×



o

o

.



3. Ta`riflar:

  1)


y

sin

y

r

a = = ;       2)



x

cos

x

r

a

= = ;



  3)

,

0



y

tg

x

x

a

=



¹

; 4)


,

0

x



ctg

y

y

a =


¹

;

  5)



sin

cos


tg

a

a



a

=

;      6)



cos

sin


ctg

a

a



a

=

.



Trigonometrik funksiyalar qiymatlari jadvali

Funksiyalar

Burchak α,

gradus(radian)

sin α

cos α


tg α

ctg α


0° (0)

0

1



0

Mavjud emas

15° (π/12)

3 1


2 2

-

3 1



2 2

+

2



3

-

2



3

+

18° (π /10)



5 1

4

-



5

5

2 2



+

5 1


10 2 5

-

+



10 2 5

5 1


+

-

22,5° (π /8)



2

2 2


-

2

2 2



+

2 1


-

2 1


+

30° (π /6)

1 2

3 2


1

3

3



36° (π /5)

5

5



2 2

-

5 1



4

+

10 2 5



5 1

-

+



5 1

10 2 5


+

-

45° (π /4)



2 2

2 2


1

1

60° (π /3)



3 2

1 2


3

1

3



90° (π /2)

1

0



Mavjud

emas


0

Click here to buy

A

B

B

Y

Y

PD

F Transfo

rm

er

2

.0

w

w

w .A

B B Y Y.

c o

m

Click here to buy

A

B

B

Y

Y

PD

F Transfo

rm

er

2

.0

w

w

w .A

B B Y Y.

c o

m

46

75° (5 π /12)

3 1

2 2


+

3 1


2 2

-

2



3

+

2



3

-

180° (π)



0

-1

0



Mavjud emas

270° (3 π /2)

-1

0

Mavjud



emas

0

360° (2 π)



0

1

0



Mavjud emas

Trigonometrik funksiyalarning ishoralari

Asosiy trigonometrik ayniyatlar

1.

2



2

cos


sin

1

a



a

+

=



.     2.

(

)



sin

1

;



2

1 ,


cos

2

tg



n

n

Z

ctg

a

p



a

a

a



a

=

=



¹

+

Î



.

3.

1



tg

ctg

a

a



×

= .        4.

cos

1

;



,

sin


ctg

n

n

Z

tg

a

a



a p

a

a



=

=

¹



Î

.

5.



2

2

1



1

cos


tg

a

a



+

=

.       6.



2

2

1



1

;

,



sin

ctg

n

n

Z

a

a p



a

+

=



¹

Î

.



Download 0.8 Mb.

Do'stlaringiz bilan baham:
1   ...   7   8   9   10   11   12   13   14   ...   18




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling