Abdullaev U. Republic of Uzbekistan. Land degradation assessment in dry lands (lada) // Research and Design Institute Uzgipromeliovodkhoz. Tashkent. 2003. P


Download 34.97 Kb.
Sana28.09.2023
Hajmi34.97 Kb.
#1688859
Bog'liq
ADABIYOTLAR. 25.05 2023


  1. Abdullaev U. Republic of Uzbekistan. Land degradation assessment in dry lands (LADA) // Research and Design Institute Uzgipromeliovodkhoz. Tashkent. - 2003. - P. 43.

  2. Abdullaev U. Republic of Uzbekistan. Land degradation assessment in dry lands (LADA) // Research and Design Institute Uzgipromeliovodkhoz. Tashkent. - 2003. - P. 43.

  3. Axmedov A.U., Boirov A.J., Ruzmetov U.I. Tuproqlarning sho’rlanish darajasi// “Xorazm viloyati tuproqlari” Toshkent, FAN-2003.-B. 35-68.

  4. Abdel-Motagally, F., and El-Zohri, M. (2018). Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. J. Saudi Soc. Agric. Sci. 17, 178-185. doi: 10.1016/j.jssas.2016.03.005

  5. Ahmed, A. A. M., Mohamed, E. A., Hussein, M. Y., and Sallam, A. (2021). Genomic Regions Associated with Leaf Wilting Traits under Drought Stress in Spring Wheat at the Seedling Stage Revealed by GWAS. Environ. Exp. Bot. 184, 104393. doi:10.1016/j.envexpbot.2021.10439

  6. Alandia, G., Jacobsen, S. E., Kyvsgaard, N., Condori, B., and Liu, F. (2016). Nitrogen sustains seed yield of quinoa under intermediate drought. J. Agron. Crop Sci. 202, 281-291. doi: 10.1111/jac.12155

  7. Ambavaram R, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. // Nature Communications. 2014. V. 5, - P. 1-14

  8. Angus, J. F., and Herwaarden, A. (2001). Increasing water use and water use efficiency in dryland wheat. Agron. J. 93, 290-298. doi: 10.2134/agronj2001.932290x

  9. Arya, S., Mishra, D. K., and Bornare, S. S. (2013). Screening Genetic Variability in advance Lines for Drought Tolerance of Bread Wheat (Triticum aestivum). Biosc 8, 1193-1196.

  10. Arzani, A., and Ashraf, M. (2017). Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health‐beneficial Food Products. Compr. Revi. Food Sci. Food Saf. 16, 477-488. doi:10.1111/1541-4337.12262.

  11. Arzani, A., and Ashraf, M. (2017). Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health‐beneficial Food Products. Compr. Revi. Food Sci. Food Saf. 16, 477-488. doi:10.1111/1541-4337.12262

  12. Barakat, M., Saleh, M., Al-Doss, A., Moustafa, K., Elshafei, A., and Al-Qurainy, F. (2015). Identification of New SSR Markers Linked to Leaf Chlorophyll Content, Flag Leaf Senescence and Cell Membrane Stability Traits in Wheat under Water Stressed Condition. Acta Biologica Hungarica 66, 93-102. doi:10.1556/ABiol.66.2015.1.8

  13. Basso, B., and Ritchie, J. (2014). Temperature and drought effects on maize yield. Nat. Clim. Chang. 4, 233-243. doi: 10.1038/nclimate2139

  14. Batool, A., Akram, N. A., Cheng, Z.-G., Lv, G.-C., Ashraf, M., Afzal, M., et al. (2019). Physiological and biochemical responses of two spring wheat genotypes to non-hydraulic root-to-shoot signalling of partial and full root-zone drought stress. Plant Physiol. Biochem. 139, 11-20. doi: 10.1016/j.plaphy.2019.03.001

  15. Bhatta, M., Regassa, T., Rose, D. J., Baenziger, P. S., Eskridge, K. M., Santra, D. K., et al. (2017). Genotype, Environment, Seeding Rate, and Top‐dressed Nitrogen Effects on End‐use Quality of Modern Nebraska winter Wheat. J. Sci. Food Agr. 97, 5311-5318. doi:10.1002/jsfa.8417.

  16. Bhatta, M., Regassa, T., Rose, D. J., Baenziger, P. S., Eskridge, K. M., Santra, D. K., et al. (2017). Genotype, Environment, Seeding Rate, and Top‐dressed Nitrogen Effects on End‐use Quality of Modern Nebraska winter Wheat. J. Sci. Food Agr. 97, 5311-5318. doi:10.1002/jsfa.8417

  17. Bhoite, R., Si, P., Siddique, K. H. M., and Yan, G. (2021). Comparative Transcriptome Analyses for Metribuzin Tolerance Provide Insights into Key Genes and Mechanisms Restoring Photosynthetic Efficiency in Bread Wheat (Triticum aestivum L.). Genomics 113, 910-918. doi:10.1016/j.ygeno.2021.02.004

  18. Bhusal, N., Sharma, P., Sareen, S., and Sarial, A. K. (2018). Mapping QTLs for Chlorophyll Content and Chlorophyll Fluorescence in Wheat under Heat Stress. Biol. Plant 62, 721-731. doi:10.1007/s10535-018-0811-6

  19. Biswal, A. K., and Kohli, A. (2013). Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol. Breed. 31, 749-766. doi: 10.1007/s11032-013-9847-7

  20. Borrill, P., Fahy, B., Smith, A. M., and Uauy, C. (2015). Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using NAM RNAi plants. PLoS One 10:e0134947. doi: 10.1371/journal.pone.0134947

  21. Bot, A., and Benites, J. (2005). The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. Rome: Food & Agriculture Organization.2005. V. 78.

  22. Dadaboyeva M. B. ,Xakimova R. Sh.,Sattorov B. N.,Boxirova M.K.. Soderjaniye fotosinteticheskix pigmentov u sitrosovux rasteniy v usloviyax nazemnogo limonariya v Severnom Tadjikistane. // Dokladi akademii nauk Respubliki Tadjikistan. 2018, Т. 61, №4. - С.407-409.

  23. Dospexov.V.A.”Методы полевого опыта.” - М.: Agropromizdat, - 1985. 351-bet.

  24. Das, M. K., Bai, G., Mujeeb-Kazi, A., and Rajaram, S. (2016). Genetic Diversity Among Synthetic Hexaploid Wheat Accessions (Triticum aestivum) with Resistance to Several Fungal Diseases. Genet. Resour. Crop Ev. 63, 1285-1296. doi:10.1007/s10722-015-0312-9

  25. Datta, J. K., Mondal, T., Banerjee, A., and Mondal, N. K. (2011). Assessment of drought tolerance of selected wheat cultivars under laboratory condition. J. Agric. Technol. 7, 383-393.

  26. Dehnavi, A. R., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., and Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy 10:859. doi: 10.3390/agronomy10060859

  27. Deng X, Sha Y, Lv Z, Wu Y, Zhang A, Wang F and Liu B (2018) The Capacity to Buffer and Sustain Imbalanced D-Subgenome Chromosomes by the BBAA Component of Hexaploid Wheat Is an Evolved Dominant Trait. Front. Plant Sci. 9:1149. doi: 10.3389/fpls.2018.01149

  28. Dev, H., dev, S., Chang, X., Hao, C., Sun, D. va Jing, R. (2019). TaPPH - 7a Haplotiplarini aniqlash va oddiy bug'doydagi muhim agronomik xususiyatlar bilan bog'liq molekulyar markerni ishlab chiqish. Bmc Zavodi Biol. 19, 296. doi:10.1186/s12870-019-1901-0

  29. Egamberdiyev O. J. Sug’oriladigan o’tloqi allyuvial tuproqlar xossalarini resurs tajamkor va tuproq himoyalovchi texnologiyalar ta’sirida o’zgarishini ilmiy asoslash(Xorazm viloyati misolida).//Qishloq xo’jalik fanlari nomzodi ilmiy darajasini olish uchun yozilgan avtoreferat dissertatsiyasi. Toshkent, 2007 - B. 20.

  30. El Sabagh, A., Hossain, A., Islam, M. S., Barutcular, C., Hussain, S., Hasanuzzaman, M., et al. (2019a). Drought and salinity stresses in barley: consequences and mitigation strategies. Austral. J. Crop Sci. 13:810. doi: 10.21475/ajcs.19.13.06.p1286

  31. Emms D.M, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy./ Genome Biology. 2015. V. 16, - P. 1-14

  32. Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., et al. Climate Change and Plants: Biodiversity, Growth and Interactions. Haripur: CRC Press. 2021. 226. https://doi.org/10.1201/9781003108931

  33. Fahad, S., Sönmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., et al. (2021d). Engineering Tolerance in Crop Plants Against Abiotic Stress. Haripur: CRC Press. 2021. 60-71. https://doi.org/10.1201/9781003160717

  34. Fan, Y.; Chen, J.; Wang, Z.; Tan, T.; Li, S.; Li, J.; Wang, B.; Zhang, J.; Cheng, Y.; Wu, X.; et al. Soybean (Glycine max L. Merr.) seedlings response to shading: Leaf structure, photosynthesis and proteomic analysis. BMC Plant Biol. 2019, 19, 34.

  35. Farooq, M., Hussain, M., and Siddique, K. H. (2014). Drought stress in wheat during flowering and grain-filling periods. CRC. Crit. Rev. Plant Sci. 33, 331-349. doi: 10.1080/07352689.2014.875291

  36. Farooq, M., Hussain, M., and Siddique, K. H. M. (2014). Drought stress in wheat during flowering and grain-filling periods. CRC Crit. Rev. Plant Sci. 33, 331-349. doi: 10.1080/07352689.2014.875291

  37. Feng, Z., Zhang, L., Yang, C., Wu, T., Lv, J., Chen, Y., et al. (2014). EF8 Is Involved in Photoperiodic Flowering Pathway and Chlorophyll Biogenesis in Rice. Plant Cell Rep 33, 2003-2014. doi:10.1007/s00299-014-1674-8

  38. Fisher, R. A., Byerlee, D. va Edmeades, G. (2014). Ekinlar hosildorligi va Global oziq-ovqat xavfsizligi. Kanberra, harakat: ACIAR, 8-11

  39. Francois, L. E., Grieve, C. M., Maas, E. V., and Lesch, S. M. (1994). Time of salt stress affects growth and yield components of irrigated wheat. Agron. J. 86, 100-107. doi: 10.2134/agronj1994.00021962008600010019x

  40. Friso G, Giacomelli L, Ytterberg A.J, Peltier J.B, Rudella A, Sun Q, Wijk KJ. 2004. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. // Plant Cell. 2004. V. 16. - P. 478- 499

  41. Ghosh, B., Md, N. A., and Gantait, S. (2016). Response of rice under salinity stress: a review update. Rice Res. 4:167. doi: 10.4172/2375-4338.1000167

  42. Giraldo, P., Benavente, E., Manzano-Agugliaro, F., and Gimenez, E. (2019). Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy 9, 352. doi: 10.3390/agronomy9070352

  43. Govindaraj, M., Vetriventhan, M., and Srinivasan, M. (2015). Importance of Genetic Diversity Assessment in Crop Plants and its Recent Advances: an Overview of its Analytical Perspectives. Genet. Res. Int. 2015, 431487. doi:10.1155/2015/431487

  44. Goyal E, Amit SK, Singh RS, Mahato AK, Chand S, Kanika K. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia local. Sci Rep. 2016;13:27-75

  45. Gupta, P. K., Balyan, H. S., and Gahlaut, V. (2017). QTL Analysis for Drought Tolerance in Wheat: Present Status and Future Possibilities. Agronomy 7, 5. doi:10.3390/agronomy7010005

  46. Gupta, P. K., Balyan, H. S., Sharma, S., and Kumar, R. (2020). Genetics of Yield, Abiotic Stress Tolerance and Biofortification in Wheat (Triticum aestivum L.). Theor. Appl. Genet. 133, 1569-1602. doi:10.1007/s00122-020-03583-3

  47. Hassan, F. S. C., Solouki, M., Fakheri, B. A., Nezhad, N. M., and Masoudi, B. (2018). Mapping QTLs for Physiological and Biochemical Traits Related to Grain Yield under Control and Terminal Heat Stress Conditions in Bread Wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 24, 1231-1243. doi:10.1007/s12298-018-0590-8

  48. Hedges, L. V., and Curtis, G. (1999). The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150-1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2

  49. Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., and Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Clim. Change Agric 123-145. doi: 10.5772/intechopen.87982

  50. Ibragimov M. Xorazm voxasi yer osti suvlari sathi, mineralizatsiyasi, doimiy va vaqtinchalik dinamikasi.//Qishloq xo’jalik fanlari nomzodi ilmiy darajasini olish uchun yozilgan avtoreferat dissertatsiyasi. Germaniya,Bonn. 2002. -B. 23.

  51. Ivanov L. A.”О методе быстрого взвешивания для определения транспирации в естественных условиях “/Ivanov L.A., Silin A. A.,Yu. L. Tselniker// “Ботанический журнал.” - 1950. -35-tom. - № 2.171-185 bet.

  52. Ibrakhimov M. Spatial and temporal dynamics of groundwater table and salinity in Khorezm (Aral Sea Basin), Uzbekistan. // Abstract of diss. of Ph.D Thesis. - Universität Bonn. Germany. 2005. - P. 16.

  53. Ibrakhimov M. Spatial and temporal dynamics of groundwater table and salinity in Khorezm (Aral Sea Basin), Uzbekistan. // Abstract of diss. of Ph.D Thesis. - Universität Bonn. Germany. 2005. - P. 16.

  54. Ichsan, C. N., Basyah, B., Zakaria, S., and Efendi, E. (2021). Alteration of dry matter accumulation under soil moisture fluctuation stress in rice ('Oryza sativa'L.). Aust. J. Crop Sci. 15, 757-763. doi: 10.21475/ajcs.21.15.05.p3142

  55. Janati W, Mikou K, El Ghadraoui L and Errachidi F (2022) Isolation and characterization of phosphate solubilizing bacteria naturally colonizing legumes rhizosphere in Morocco. Front. Microbiol. 13. 958-300. doi: 10.3389/fmicb.2022.958300

  56. Koshelyaev, V. V. Sortovoy potensial yarovoy myagkoy pshenisы i yachmenya v usloviyax Pen- zenskoy oblasti / V. V. Koshelyav, I. P. Koshelyaeva, S. M. Kudin // Niva Povoljya. - 2012. - № 1 (22). - S.17-21.

  57. Khamzina A. Root development of tree species under different soil and water conditions in irrigated and marginal areas of the Khorezm Region. Midterm report // Zentrum für Entwicklungsforshung. Bonn. - 2003. - P. 30.

  58. Kondo, T.; Gordon, J.B.; Pinnola, A.; Dall’Osto, L.; Bassi, R.; Schlau-Cohen, G.S. Microsecond and millisecond dynamics in the photosynthetic protein LHCSR1 observed by single-molecule correlation spectroscopy. Proc. Natl. Acad. Sci. USA 2019, 116, 11247-11252.

  59. Kumari, A., and Kaur, R. (2018). Evaluation of benzyl-butyl phthalate induced germination and early growth vulnerability to barley seedlings (Hordeum vulgare L.). Indian J. Ecol. 45, 174-177.

  60. Kumari, A., and Kaur, R. (2020). A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation. Plant Growth Regul. 91, 327-347. doi: 10.1007/s10725-020-00625-0

  61. Leong, T.; Anderson, J. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosynth. Res. 1984, 5, 105-115. [Google Scholar] [CrossRef] [PubMed]

  62. Li, M., Li, B., Guo, G., Chen, Y., Xie, J., Lu, P., et al. (2018). Mapping a Leaf Senescence Gene Els1 by BSR-Seq in Common Wheat. Crop J. 6, 236-243. doi:10.1016/j.cj.2018.01.004

  63. Li, X.; Yang, R.; Li, L.; Liu, K.; Harrison, M.T.; Fahad, S.; Wei, M.; Yin, L.; Zhou, M.; Wang, X. Physiological and Molecular Responses of Wheat to Low Light Intensity. Agronomy 2023, 13, 272. https://doi.org/10.3390/ agronomy13010272

  64. Liu, H., Li, Q., Yang, F., Zhu, F., Sun, Y., Tao, Y., et al. (2016). Differential Regulation of Protochlorophyllide Oxidoreductase Abundances by VIRESCENT 5A (OsV5A) and VIRESCENT 5B (OsV5B) in Rice Seedlings. Plant Cell Physiol 57, 2392-2402. doi:10.1093/pcp/pcw151

  65. Lobell, D. B., Bänziger, M., Magorokosho, C., and Vivek, B. (2011). Nonlinear Heat Effects on African maize as Evidenced by Historical Yield Trials. Nat. Clim. Change. 1, 42-45. doi:10.1038/nclimate1043

  66. Lobell, D. B., Bänziger, M., Magorokosho, C., and Vivek, B. (2011). Nonlinear Heat Effects on African maize as Evidenced by Historical Yield Trials. Nat. Clim. Change. 1, 42-45. doi:10.1038/nclimate1043

  67. Lopes, M. S., and Reynolds, M. P. (2012). Stay-Green in Spring Wheat Can Be Determined by Spectral Reflectance Measurements (Normalized Difference Vegetation Index) Independently from Phenology. J. Exp. Bot. 63, 3789-3798. doi:10.1093/jxb/ers071

  68. Magallanes-López, A. M., Ammar, K., Morales-Dorantes, A., González-Santoyo, H., Crossa, J., and Guzmán, C. (2017). Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. J. Cereal Sci. 75, 1-9. doi: 10.1016/j.jcs.2017.03.005

  69. Mbarki, S., Sytar, O., Zivcak, M., Abdelly, C., Cerda, A., and Brestic, M. (2018). Anthocyanins of coloured wheat genotypes in specific response to salstress. Molecules 23:15-18. doi: 10.3390/molecules23071518

  70. Mi, N., Cai, F., Zhang, Y., Ji, R., Zhang, S., and Wang, Y. (2018). Differential responses of maize yield to drought at vegetative and reproductive stages. Plant Soil Environ. 64, 260-267. doi: 10.17221/141/2018-PSE

  71. Mohanty, S. K., and Swain, M. R. (2019). “Bioethanol Production from Corn and Wheat: Food, Fuel, and Future,” in Bioethanol Production from Food Crops (Academic Press), 45-59. doi:10.1016/b978-0-12-813766-6.00003-5.

  72. Mohanty, S. K., and Swain, M. R. (2019). “Bioethanol Production from Corn and Wheat: Food, Fuel, and Future,” in Bioethanol Production from Food Crops (Academic Press), 45-59. doi:10.1016/b978-0-12-813766-6.00003-5

  73. Nam, N., Chauhan, Y., and Johansen, C. (2001). Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J. Agric. Sci. 136, 179-189. doi: 10.1017/S0021859601008607

  74. Nascimento Silva, A., Ramos, M. L. G., Júnior, W. Q. R., de Alencar, E. R., da Silva, P. C., de Lima, C. A., et al. (2020). Water stress alters physical and chemical quality in grains of common bean, triticale and wheat. Agric. Water Manage. 231, 106023. doi: 10.1016/j.agwat.2020.106023

  75. Nassar, R., Kamel, H. A., Ghoniem, A. E., Alarcón, J. J., Sekara, A., Ulrichs, C., et al. (2020). Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants 9:237. doi: 10.3390/plants9020237

  76. Nawaz, F., Ahmad, R., Ashraf, M., Waraich, E., and Khan, S. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol. Environ. Saf. 113, 191-200. doi: 10.1016/j.ecoenv.2014.12.003

  77. Nieves-Cordones, M., Alemán, F., Martínez, V., and Rubio, F. (2014). K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J. Plant Physiol. 171, 688-695. doi: 10.1016/j.jplph.2013.09.021

  78. Nieves-Cordones, M., Alemán, F., Martínez, V., and Rubio, F. (2014). K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J. Plant Physiol. 171, 688-695. doi: 10.1016/j.jplph.2013.09.021

  79. Noreen, S., Fatima, K., Athar, H. U. R., Ahmad, S., and Hussain, K. (2017). Enhancement of physio-biochemical parameters of wheat through exogenous application of salicylic acid under drought stress. J. Anim. Plant Sci. 27, 153-163.

  80. OECD FAO Agricultural Outlook 2018 - 2027. Chapter 3: Cereals. Rome: Food and Agriculture Organization of the United. Nations. 2018 doi: 10.1787/agr-outl-data-en

  81. Papenbrock, J.; Mock, H.P.; Tanaka, R.; Kruse, E.; Grimm, B. Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol. 2000, 122, 1161-1170

  82. Peterson, G. W., Dong, Y., Horbach, C., and Fu, Y. B. (2014). Genotyping-by-sequencing for Plant Genetic Diversity Analysis: a Lab Guide for SNP Genotyping. Diversity 6, 665-680. doi:10.3390/d6040665

  83. Petiol APK-APKPure.com

  84. Qo’ziyev R.K.,Yuldashev G.Yu.,Akramov I.A.”Тупроқ бонитировкаси” // Toshkent “Moliya”. - 2004.127-bet.

  85. Ramya, P., Jain, N., Singh, G.P., Singh, P.K., Prabhu, K.V. Population structure, molecular and physiological characterization of elite wheat varieties used as parents in drought and heat stress breeding in India.// Indian Journal of Genetics and Plant Breeding. 2015. V. 75, - P. 250-252

  86. Rasheed, A., Takumi, S., Hassan, M. A., Imtiaz, M., Ali, M., Morgunov, A. I., et al. (2020). Appraisal of Wheat Genomics for Gene Discovery and Breeding Applications: a Special Emphasis on Advances in Asia. Theor. Appl. Genet. 133, 1503-1520. doi:10.1007/s00122-019-03523-w

  87. Ray, D. K., Mueller, N. D., West, P. C., and Jonathan, A. F. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS One 8, 1-8. doi:10.1371/journal.pone.0066428

  88. Sattarov D.S.,Qo’ziyev R.K,Karimberdiyeva A.A., Qulmuradova Ya., Mirzajonov B.,Berdiyeva X.,Ro’zmetov U.I.”Питательных режим основных орошаемых почв Хорезмской области // Проблемы генезиса, плодородия, мелиорации, экологии почв, оценка земельных ресурсов.” - Almati - 2002 – 317-bet.

  89. Sektimenko V.Ye.,Ismanov A.J.,”Хоразм вилояти тупроқлари” //Toshkent.FAN. - 2003.16-31 bet.

  90. Schieder T. Integrated economic-hydrologic water management and planning model for the Khorezm region in Uzbekistan // Tropentag - Conference on International Agricultural Research for Development. 2004. - P. 46-54.

  91. Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., et al. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 9, 1705. doi: 10.3389/fpls.2018.01705

  92. Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., et al. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10, 259. doi: 10.3390/plants10020259

  93. Selim, D. A.-F. H., Nassar, R. M. A., Boghdady, M. S., and Bonfill, M. (2019). Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiol. Biochem. 135, 480-488. doi: 10.1016/j.plaphy.2018.11.012

  94. Sieber, M. H., Thomsen, M. B., and Spradling, A. C. Electron transport chain remodeling by GSK3 during oogenesis connects nutrient state to reproduction. //Cell. 2016. V. 164, - P. 420-432

  95. Singh B. D., Singh, A. K. (2015). Marker-Assisted Plant Breeding: Principles and Practices.Cham: Springer.2015. - P. 449-455

  96. Sonah, H., Bastien, M., Iquira, E., Tardivel, A., Legare, G., Boyle, B.,et al. (2013).An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8(1). 54-60. doi: 10.1371/journal.pone.0054603

  97. Sultana, N., Islam, S., Juhasz, A., and Ma, W. (2021). Wheat Leaf Senescence and its Regulatory Gene Network. Crop J. 9, 703-717. doi:10.1016/j.cj.2021.01.004

  98. Sytar, O., Mbarki, S., Zivcak, M., and Brestic, M. (2018). “The involvement of different secon dary metabolites in salinity tolerance of crops,” in Salinity Responses and Tolerance in Plants, eds V. Kumar, S. Wani, P. Suprasanna, and L. S. Tran. Vol. 2. (Cham: Springer), 21-48. doi: 10.1007/978-3-319-90318-7-2

  99. Tursunov L., Egamberdiyev O., Turayev T. Xorazm voxasi tuproq qoplamining hozirgi holati (Xiva tumani misolida)// O’zb. Kimyo-biologiya axborotnomasi. Toshkent.-2002. -№1-B. 39-42.

  100. Toshqo’ziyev M.M. Respublika asosiy tuproqlarida gumus miqdori va uni sug’oriladigan dehqonchilikda o’zgarishi// Yer resurslaridan oqilona foydalanish va tuproqlarni muhofaza qilish ilmiy amaliy anjuman ma’ruzalari va tezislari to’plami. Toshkent. - 2001. - B. 31-37.

  101. Tretyakov N.N., Karnauxova T.V.,Panichkin L.A.”Практикум по физиологии растений.”Moskva 477-488 bet.

  102. Vijayalakshmi, K., Fritz, A. K., Paulsen, G. M., Bai, G., Pandravada, S., and Gill, B. S. (2010). Modeling and Mapping QTL for Senescence-Related Traits in Winter Wheat under High Temperature. Mol. Breed. 26, 163-175. doi:10.1007/s11032-009-9366-8

  103. Voss-Fels, K. P., Stahl, A., Wittkop, B., Lichthardt, C., Nagler, S., Rose, T., et al. (2019). Breeding Improves Wheat Productivity under Contrasting Agrochemical Input Levels. Nat. Plants 5, 706-714. doi:10.1038/s41477-019-0445-5

  104. Vernon, L.P. Spectro photenatric determination of chlorophylls and phiopkytine in plant ertrnota. Analyt. Chem. 1960. -V. 32 № 9.-P. 1144-1150.

  105. Yamatani, H., Kohzuma, K., Nakano, M., Takami, T., Kato, Y., Hayashi, Y., et al. (2018). Impairment of Lhca4, a Subunit of LHCI, Causes High Accumulation of Chlorophyll and the Stay-Green Phenotype in Rice. J. Exp. Bot. 69, 1027-1035. doi:10.1093/jxb/erx468

  106. Yan, X., Wang, S., Yang, B., Zhang, W., Cao, Y., Shi, Y., et al. QTL Mapping for Flag Leaf-Related Traits and Genetic Effect of QFLW-6A on Flag Leaf Width Using Two Related Introgression Line Populations in Wheat. Plos One. 2020. 19(15), doi:10.1371/journal.pone.0229912

  107. Yang B, Wen X, Wen H, Feng Y, Zhao J, Wu B, Zheng X, Yang C, Yang S, Qiao L and Zheng J (2022) Identification of Genetic Loci Affecting Flag Leaf Chlorophyll in Wheat Grown under Different Water Regimes. Front. Genet. 13:832-898. doi: 10.3389/fgene.2022.832898

  108. Yang, B., Yan, X., Wang, H., Li, X., Ma, H., Wang, S., et al. (2016a). Dynamic QTL Analysis of Chlorophyll Content during Grain Filling Stage in Winter Wheat (Triticum aestivum L.). Rom. Agric. Res. 33, 77-85.

  109. Yang, D.,273-b Li, M., Liu, Y., Chang, L., Cheng, H., Chen, J., et al. (2016). Identification of Quantitative Trait Loci and Water Environmental Interactions for Developmental Behaviors of Leaf Greenness in Wheat. Front. Plant Sci. 7, 273. doi:10.3389/fpls.2016.00273

  110. Yang, J., Zhou, Y., Wu, Q., Chen, Y., Zhang, P., Zhang, Y., et al. (2019). Molecular Characterization of a Novel TaGL3-5A Allele and its Association with Grain Length in Wheat (Triticum aestivum L.). Theor. Appl. Genet. 132, 1799-1814. doi:10.1007/s00122-019-03316-1

  111. Yang, Y. R., Huang, Q. Q., Zhao, Y. A., Tang, J. Y., and Liu, X. (2020). Advances on Gene Isolation and Molecular Mechanism of Rice Leaf Color Genes. J. Plant Genet. Resour. 21, 794-803.

  112. Yavuz, D., Seymen, M., Yavuz, N., Çoklar, H., and Ercan, M. (2021). Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon. Agric. Water Manage. 2021. 246, 106-673. doi: 10.1016/j.agwat.2020.106673

  113. Yuan, C., Cothren, J., De-hua, C., Ibrahim, A., Lombardini, L. Ethyl-ene inhibiting compound 1-MCP delays leaf senescence in cotton plants under abiotic stress conditions. //Journal of Integrative Agriculture. 2015. V. 14 № 7, - P. 1321-1331.

  114. Yuan, C., Cothren, J., De-hua, C., Ibrahim, A., Lombardini, L. Ethyl-ene inhibiting compound 1-MCP delays leaf senescence in cotton plants under abiotic stress conditions. //Journal of Integrative Agriculture. 2015. V. 14 № 7, - P. 1321-1331.

  115. Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., Peng, C., et al. (2018). Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int. J. Environ. Res. Public Health 15, 839. doi: 10.3390/ijerph15050839

  116. Zhang, K., Zhang, Y., Chen, G., and Tian, J. (2009b). Genetic Analysis of Grain Yield and Leaf Chlorophyll Content in Common Wheat. Cereal Res. Commun. 37, 499-511. doi:10.1556/crc.37.2009.4.3

  117. Zhang, K., Zhang, Y., Chen, G., and Tian, J. (2009b). Genetic Analysis of Grain Yield and Leaf Chlorophyll Content in Common Wheat. Cereal Res. Commun. 37, 499-511. doi:10.1556/crc.37.2009.4.3

  118. Zhu, X142-b].-F., Zhang, H.-P., Hu, M.-J., Wu, Z.-Y., Jiang, H., Cao, J.-J., et al. (2016). Cloning and Characterization of Tabas1-B1 Gene Associated with Flag Leaf Chlorophyll Content and Thousand-Grain Weight and Development of a Gene-Specific Marker in Wheat. Mol. Breed. 36, 142. doi:10.1007/s11032-016-0563-y

  119. Zhu, Y. L., Song, Q. J., Hyten, D. L., van Tassell, C. P., Matukumalli, L. K., Grimm, D. R.,et al. (2003).Single-nucleotide polymorphisms in soybean. Genetics 163, 1123-1134. doi: 10.1126/science.2047873

  120. Shahid, S. A., Zaman, M., and Heng, L. (2018). “Introduction to soil salinity, sodicity and diagnostics techniques,” in Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, eds M. Zaman, S. A. Shahid, and L. Heng (Cham: Springer), 1-42. doi: 10.1007/978-3-319-96190-3_1

  121. Shi, S., Azam, F. I., Li, H., Chang, X., Li, B., and Jing, R. (2017). Mapping QTL for Stay-Green and Agronomic Traits in Wheat under Diverse Water Regimes. Euphytica 213, 246. doi:10.1007/s10681-017-2002-5

  122. Shi, S., Azam, F. I., Li, H., Chang, X., Li, B., and Jing, R. (2017). Mapping QTL for Stay-Green and Agronomic Traits in Wheat under Diverse Water Regimes. Euphytica 213, 246. doi:10.1007/s10681-017-2002-5

  123. Chamorro, D., Luna, B., Ourcival, J. M., Kavgac,i, A., Sirca, C., Mouillot, F., et al. (2017). Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biol. 19, 23-31. doi: 10.1111/plb.12450

  124. Chang, C., Lu, J., Zhang, H.-P., Ma, C.-X., and Sun, G. (2015). Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat. Plos One 10, e0145970. doi:10.1371/journal.pone.0145970

  125. Choudhary M., Yadav M., Saran, R. Advanced screening and breedingapproaches for heat tolerance in wheat. // Journal of Pharmacognosy and Phyto-chemistry. 2020. V. 9 № 2, - P. 1047-1052.

  126. Christopher, M., Chenu, K., Jennings, R., Fletcher, S., Butler, D., Borrell, A., et al. (2018). QTL for Stay-Green Traits in Wheat in Well-Watered and Water-Limited Environments. Field Crops Res. 217, 32-44. doi:10.1016/j.fcr.2017.11.003

  127. Christopher, M., Paccapelo, V., Kelly, A., Macdonald, B., Hickey, L., Richard, C., et al. (2021). QTL Identified for Stay-Green in a Multi-Reference Nested Association Mapping Population of Wheat Exhibit Context Dependent Expression and Parent-Specific Alleles. Field Crops Res. 270, 108-181. doi:10.1016/j.fcr.2021.108181

  128. Walker, B.J.; Kramer, D.M.; Fisher, N.; Fu, X. Flexibility in the Energy Balancing Network of Photosynthesis Enables Safe Operation under Changing Environmental Conditions. Plants 2020, 9, 301

  129. Wan C, Dang P, Gao L, Wang J, Tao J, Qin X, Feng B and Gao J (2022) How Does the Environment Affect Wheat Yield and Protein Content Response to Drought? A Meta-Analysis. Front. Plant Sci. 13. 896-985. doi: 10.3389/fpls.2022.896985

  130. Wang J. R,. Li S. X. Effect of water-limited deficit stress in different growth stages on winter wheat grain yields and their yield constituents. // Acta Bot. Boreal-Occident Sin. 2000. V. 20 № 2, - P. 193-200.

  131. Wang, M., Yu, S., Shao, G., Gao, S., Wang, J., and Zhang, Y. (2018). Impact of alternate drought and flooding stress on water use, and nitrogen and phosphorus losses in a paddy field. Polish J. Environ. Stud. 27, 1-10. doi: 10.15244/pjoes/75188

  132. Wang, N., Xie, Y., Li, Y., Wu, S., Li, S., Guo, Y., et al. (2020a). High-Resolution Mapping of the Novel Early Leaf Senescence Gene Els2 in Common Wheat. Plants 9, 698. doi:10.3390/plants9060698

  133. Wang, S.-X., Zhu, Y.-L., Zhang, D.-X., Shao, H., Liu, P., Hu, J.-B., et al. (2017). Genome-Wide Association Study for Grain Yield and Related Traits in Elite Wheat Varieties and Advanced Lines Using SNP Markers. Plos One 12, e0188662. doi:10.1371/journal.pone.0188662

Download 34.97 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling