Algoritmni loyihalash
Download 0.58 Mb.
|
A l 2-topshiriq
- Bu sahifa navigatsiya:
- 2-masala. Quyidagi funksiyani to’rtburchaklar, Trapetsiya va Simpson formulalari yordamida taqribiy hisoblash dasturini tuzing
- S+=funk(xa); xa+=0.1; } S*=fabs(b-a)/n; cout return 0; }
- include
- if((1/i)-(1/(i+1))>0.0001)
- include using namespace std int main() {
Kirish ma'lumotlari
n natural son berilgan. A[n][n] massiv berilgan. Chiquvchi ma’lumotlar Har bir satrdan eng kata elementlarni chiqaring #include #include using namespace std; void matrix_print(int a[10][10], int n) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { cout << a[i][j] << "\t"; } cout << "\n"; } } int satr_max(int a[], int n) { int max = a[0]; for (int i = 1; i < n; i++) if (max < a[i]) max = a[i]; return max; } int main() { int n, a[10][10]; cout << "Satrlar sonini kiriting \nn="; cin >> n; cout <<"Massiv elementlarini kiriting \n"; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) cin >> a[i][j]; cout << "Kiritilgan matritsa\n"; matrix_print(a, n); for (int i = 0; i < n; i++) { cout << i << "-satrning eng kattasi=" << satr_max(&a[i][0], n); cout << endl; } return 0; system ("pause"); } 2-masala. Quyidagi funksiyani to’rtburchaklar, Trapetsiya va Simpson formulalari yordamida taqribiy hisoblash dasturini tuzing #include #include using namespace std; double funk(double x) { return (sin(x)/(1+x*x)); } int main() { double a,b,S=0, xa; int n=10; cout<<"integral chegarasini kiriting"< cin>>a>>b; xa=a+0.1; while (xa { S+=funk(xa); xa+=0.1; } S*=fabs(b-a)/n; cout << S; return 0; } Ketma-ketlikning yig’indisini toping ; Sikl takrorlanishi . Algoritm samaradorligini baholang. #include using namespace std; int main(){ double s=0,n; for(double i=1;i<=300;i++) { if((1/i)-(1/(i+1))>0.0001) s+=1/i; } cout< } 2 ta kvadrat matritsa berilgan. Ularning yig’indisini toppish algoritmini toping va uni samaradorligini baholang. #include using namespace std int main() { int m, n, c, d, first[100][100], second[100][100], sum[100][100]; cout << "Matritsa satr va ustunlar sonini kiriting:\n"; cin >> n; cout << "Birinchi matritsa elementlarini kiriting\n"; for (c = 0; c < n; c++) for (d = 0; d < n; d++) cin >> first[c][d]; cout << "Ikkinchi matritsa elementlarini kiriting\n"; for (c = 0; c < n; c++) for (d = 0; d < n; d++) cin >> second[c][d]; for (c = 0; c < n; c++) for (d = 0; d < n; d++) sum[c][d] = first[c][d] + second[c][d]; cout << "Matritsalar yig'indisi:\n"; for (c = 0; c < n; c++) { for (d = 0; d < n; d++) cout << sum[c][d] << "\t"; cout << endl; } return 0; } 3. n o’lchamli kvadrat matritsa berilgan. Uning teskari matritsasini toppish algoritmini toping va uni samaradorligini baholang. #include using namespace std; int main(){ int mat[3][3], i, j; float determinant = 0; cout<<"Matritsa elementlarini kiriting:\n"; for(i = 0; i < 3; i++) for(j = 0; j < 3; j++) cin>>mat[i][j]; printf("\nMatritsa Joylashuvi:"); for(i = 0; i < 3; i++){ cout<<"\n"; for(j = 0; j < 3; j++) cout< } for(i = 0; i < 3; i++) determinant = determinant + (mat[0][i] * (mat[1][(i+1)%3] * mat[2][(i+2)%3] - mat[1][(i+2)%3] * mat[2][(i+1)%3])); cout<<"\n\nteskari matritsa: \n"; for(i = 0; i < 3; i++){ for(j = 0; j < 3; j++) cout<<((mat[(j+1)%3][(i+1)%3] * mat[(j+2)%3][(i+2)%3]) - (mat[(j+1)%3][(i+2)%3] * mat[(j+2)%3][(i+1)%3]))/ determinant<<"\t"; cout<<"\n"; } return 0; } Download 0.58 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling