Аналитической геометрии и ее история
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ
Download 228.57 Kb.
|
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ
Методами аналитической геометрии исследуются также и пространственные фигуры. Нужно лишь воспользоваться тремя взаимно перпендикулярными осями, проходящими через начало координат О. Снабдив каждую ось шкалой, можно задать тремя числами (координатами) положение точки в пространстве. Например (рис. 10), P = (1,2,3). Множеству точек, удовлетворяющих некоторому геометрическому условию, соответствует определенное алгебраическое соотношение между их координатами x, y, z. Для задания этого соответствия необходима фундаментальная формула, определяющая расстояние d между точками P1 = (x1, y1, z1) и P2 = (x2, y2, z2), а именно: d2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2. Эта формула представляет собой обобщение теоремы Пифагора с двумерного случая на трехмерный. Из нее следует, что сфера радиуса r с центром в начале координат описывается уравнением x2 + y2 + z2 = r2. Любая плоскость задается уравнением первой степени относительно x, y и z, т.е. уравнением вида Ax + By + Cz = D, где A, B, C и D – постоянные и, по крайней мере, один из коэффициентов A, B или C не равен нулю. Помимо сферы есть и другие поверхности, также описываемые уравнением второй степени относительно x, y и z. Одна из задач аналитической геометрии в трехмерном пространстве состоит в том, чтобы дать классификацию таких квадратичных поверхностей и, исходя из соответствующих им уравнений, исследовать их свойства. Эти поверхности называются эллипсоидами, параболоидами, гиперболоидами или коническими и цилиндрическими поверхностями различных типов. Особенно простой подкласс этих фигур состоит из поверхностей, получаемых при вращении конических сечений вокруг различных осей симметрии. Существуют многочисленные поверхности, задаваемые уравнениями более высокого порядка. Как правило, они довольно сложны. Их изучением, как и плоских кривых высокого порядка, занимается алгебраическая геометрия. Как и в случае фигур на плоскости, исследование трехмерных геометрических тел часто облегчается подходящим выбором координатных осей. Соответствующее уравнение обычно удается упростить с помощью параллельного переноса и (или) поворота осей. Иногда бывает удобно воспользоваться непрямоугольной системой координат. Например, если в уравнение, записанное в прямоугольных координатах x, y и z, подставить x = r cos q, y = r sin q и z = z, то получится эквивалентное и нередко более простое уравнение в цилиндрических координатах r, q и z (рис. 11). Так, уравнение z = x2 + y2 сводится к уравнению z = r2. Подстановка x = r cos q sin f, y = r sin q sin f, z = r cos f преобразует уравнение, заданное в прямоугольных координатах, в уравнение в сферических координатах r, q и f (рис. 12). Аналитическая геометрия занимается также изучением прямых и кривых в трехмерном пространстве. Прямую можно рассматривать как линию пересечения подходящей пары плоскостей. Соответственно, пространственную прямую можно задать с помощью двух уравнений первого порядка. Однако часто бывает проще задать прямую L с помощью параметра t следующим образом: x = x0 + a1t, y = y0 + a2t, z = z0 + a3t. Когда t принимает все возможные действительные значения, мы получаем все возможные значения x, y и z для точек на L. При t = 0 мы получаем координаты x0, y0 и z0 некоторой точки P0; при t = 1 – координаты (x0 + a1, y0 + a2, z0 + a3) некоторой другой точки P1. Прямая L определяется двумя своими точками P0 и P1. Пространственную кривую можно также записать в виде x = f1(t), y = f2(t), z = f3(t), где f1, f2 и f3 – заданные функции. (Прямая соответствует случаю, когда все три функции имеют первую степень по t.) Например, x = cos t, y = sin t, z = t – уравнения винтовой линии, получающейся при наматывании нити на цилиндрическую поверхность радиуса 1 с постоянным шагом (рис. 13). Download 228.57 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling