Applied Speech and Audio Processing: With matlab examples
Download 2.66 Mb. Pdf ko'rish
|
Applied Speech and Audio Processing With MATLAB Examples ( PDFDrive )
References
[19] B. S. Atal. Predictive coding of speech at low bitrates. IEEE Trans. Commun., COM30: 600–614, 1982. [20] M. R. Schroeder and B.S. Atal. Code-excited linear prediction CELP: High-quality speech at very low bit rates. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing, pages 937–940, 1985. [21] L. M. Supplee, R. P. Cohn, J. S. Collura, and A. V. McCree. MELP: The new Federal standard at 2400 bps. In IEEE International Conference on Acoustics, Speech and Signal Proc., volume 2, pages 1591–1594, April 1997. [22] I. A. Gerson and M. A. Jasiuk. Vector sum excited linear prediction (VSELP) speech coding at 8 kbps. In IEEE International Conference on Acoustics, Speech and Signal Proc., volume 1, pages 461–464, April 1990. 6 Audio analysis Analysis techniques are those used to examine, understand and interpret the content of recorded sound signals. Sometimes these lead to visualisation methods, whilst at other times they may be used in specifying some form of further processing or measurement of the audio. There is a general set of analysis techniques which are common to all audio signals, and indeed to many forms of data, particularly the traditional methods used for signal processing. We have already met and used the basic technique of decomposing sound into multiple sinusoidal components with the Fast Fourier Transform (FFT), and have considered forming a polynomial equation to replicate audio waveform characteristics through linear prediction (LPC), but there are many other useful techniques we have not yet considered. Most analysis techniques operate on analysis windows, or frames, of input audio. Most also require that the analysis window is a representative stationary selection of the signal (stationary in that the signal statistics and frequency distribution do not change appreciably during the time duration of the window – otherwise results may be inac- curate). We had discussed the stationarity issue in Section 2.5.1, and should note that the choice of analysis window size, as well as the choice of analysis methods used, de- pends strongly upon the identity of the signal being analysed. Speech, noise and music all have different characteristics, and while many of the same methods can be used in their analysis, knowledge of their characteristics leads to different analysis periods, and different parameter ranges of the analysis result. Undoubtedly, those needing to perform an analysis will require some experimentation to determine the best methods to be used, the correct parameters to be interpreted, and optimal analysis timings. We will now introduce several other methods of analysing sound that form part of the audio engineer’s standard toolkit, and which can be applied in many situations. Following this, we will consider the special cases of pitch analysis for speech, and the subject of understanding how the human brain interprets sound, in auditory scene analysis. Finally we will touch upon the analysis of some other signals such as music and animal noises before we discuss the use of tracking sound statistics as a method of analysis. 135 |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling