Applied Speech and Audio Processing: With matlab examples
Download 2.66 Mb. Pdf ko'rish
|
Applied Speech and Audio Processing With MATLAB Examples ( PDFDrive )
4.2. Psychoacoustics
65 Figure 4.3 Illustration of masking effect due to a single tone. The effect of the critical band filters is that for a given tone having fixed frequency and amplitude, the sensitivity of the ear to tones of similar frequency is reduced. This is illustrated in Figure 4.3 which plots the frequency response of an artificial example tone, and overlays the masking area on top of this. While listening to the tone shown, any new tone which is introduced within the identified masking area, will be inaudible. In general, once a louder tone has ‘occupied’ the sensors of one critical band filter, the same filter is less sensitive to other coincident sounds. Many researchers have attempted to derive logical models of this masking process, and these models exhibit a range of computational complexity and accuracy (some established models can be found in the literature, including the following: [9, 11, 12–16]). As an example to illustrate the masking effect, let us create two pure tones in Matlab using the tonegen() function from Section 2.7.1, ensuring that the lower frequency tone is only 20% of the amplitude of the louder one: lo=0.2*tonegen(800, 8000, 2); hi=tonegen(880, 8000, 2); Next we will use sound() to replay the audio instead of soundsc() so that we can appreciate the differences in amplitude of the two tones. We will first listen to both tones alone, then we will listen to the two tones mixed together: sound(lo/2, 8000); sound(hi/2, 8000); sound((lo+hi)/2, 8000); Both of the individual tones can be heard when played alone, although the lower frequency tone is clearly quieter. However when replayed together the result is a slightly high tone exhibiting a slight warble. The low tone should be inaudible — masked by the louder tone. One further interesting related point is that for sounds whose bandwidth falls entirely within one critical band, the intensity of that sound is independent of its bandwidth. However for sounds with bandwidth greater than one critical band, the intensity depends strongly on the proportion of the sound’s bandwidth falling within one critical band. |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling