Автоматизированный электропривод
ПЕРЕХОДНЫЕ ПРОЦЕССЫ В СИНХРОННОМ ЭЛЕКТРОПРИВОДЕ
Download 294 Kb.
|
Автоматизированный электропривод (Москаленко В....
5.5. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В СИНХРОННОМ ЭЛЕКТРОПРИВОДЕ
Переходные процессы в синхронном электроприводе отличаются сложностью и большим многообразием, что определяется наличием не скольких магнитосвязанных обмоток, несимметрией магнитной системы, регулированием во многих режимах тока возбуждения. В общем случае переходные процессы в синхронном электроприводе являются электромеханическими и описываются следующей системой уравнений: (5.13) (5.14) (5.15) (5.16) (5.17) где – напряжения, токи и сопротивление фазных обмоток: – потокосцепления этих обмоток, определяемые индуктивностью и взаимной индуктивностью обмоток и токами, по ним протекающими. Система уравнений (5.13) описывает электромагнитные процессы в цепях статора. Уравнение (5.14) описывает переходный процесс в обмотке возбуждения СД. Если на роторе имеются другие обмотки, например успокоительные, то добавляются уравнения этих обмоток. Уравнение (5.15) дает общее выражение для электромагнитного момента СД, который в соответствии с теорией электрических машин определяется частной производной по геометрическому углу г=/р от общего запаса электромагнитной энергии Wэм. Электромагнитная энергия определяется полусуммой произведений потокосцеплений обмоток на их токи и находится с помощью (5.16). Для неявнополюсного СД выражение (5.15) в конечном виде для установившегося режима имеет вид (5.7). Уравнение (5.17) описывает механическое движение ротора СД. В него помимо электромагнитного (синхронизирующего) момента СД входят асинхронный момент Мас, создаваемый пусковой обмоткой, и момент нагрузки Мс. Система уравнений (5.13) – (5.17) позволяет анализировать все возможные виды переходных процессов, возникающих в синхронном электроприводе: пуск СД и его синхронизацию, изменение нагрузки на его валу и регулирование тока возбуждения. Обычно для упрощения анализа переходных режимов уравнения (5.13)–(5.17) преобразуются к более простым, записанным относительно новых переменных и не содержащим при них периодических коэффициентов. Наиболее распространена форма записи этих преобразованных выражений в виде уравнений Парка-Горева. Несмотря на упрощение получаемых в результате подобных преобразований уравнений, для их решения необходимо использование аналоговых или цифровых ЭВМ. Аналитическими методами могут быть проанализированы лишь простейшие переходные процессы при принятии ряда допущений. В качестве примера рассмотрим переходный процесс в синхронном приводе, связанный с небольшими изменениями скорости и внутреннего неявнополюсного СД без учета электромагнитных переходных процессов. Переходный процесс в этом случае относится к классу механически к и описывается уравнением (5.17). При малых изменениях скорости и угла входящие в него моменты синхронизирующей М и асинхронный Mac могут быть представлены в следующем упрощенном виде: (5.18) (5.19) где – жесткость механической характеристики СД, обусловленной пусковой обмоткой. В результате уравнение (5.17) ротора СД при малых изменениях координат его движения принимает вид (5.20) Характеристическое уравнение, соответствующее (5.20), и его корни запишутся в виде (5.21) (5.22) где – частота свободных колебаний СД; – механическая постоянная времени СД, определяемая асинхронной пусковой обмоткой. Из (5.22) следует, что при (1/2) корни характеристического уравнения вещественные и отрицательные и переходный процесс имеет апериодический характер. При обратном соотношении этих параметров, т. е. при (1/2) характеристическое уравнение (5.21) имеет комплексные корни, в соответствии с чем переходные процессы имеют колебательный характер. Частота этих затухающих колебаний определяется выражением (5.23) а степень успокоения колебаний характеризуется величиной =1/Тм,ас. Чем меньше Тм,ас, т. е. чем больше жесткость пусковой характеристики, тем быстрее затухают колебания. При =0 затухание отсутствует и СД совершает свободные колебания с частотой св. Общее решение уравнения (5.20) имеет вид (5.24) где постоянная м,и сдвиг фазы определяется в зависимости от начальных условий для конкретного переходного процесса. На рис. 5.11 в качестве примера показаны графики переходного процесса при вхождении СД в синхронизм, которые могут быть получены с помощью (5.24). Download 294 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling