Azotobacters as biofertilizer
Download 1.58 Mb. Pdf ko'rish
|
bs.aambs.2019.07.001
0
30 60 90 0 10 20 30 40 Ammonia Nitrogen ( m g gm -1 Soil)* Day(s) After Sowing No Bacteria Azotobacter chroococcum CBD15 Azotobacter chroococcum HKD15 0 30 60 90 0 10 20 30 40 Nitrate Nitrogen ( m g gm -1 Soil)* Day(s) After Sowing No Bacteria Azotobacter chroococcum CBD15 Azotobacter chroococcum HKD15 Fig. 6 Ammonia (top) and nitrate (bottom) in soil adhering to roots of wheat plants. No urea was added to soil. Azotobacter chroococcum CBD15 is the wild type and Azotobacter chroococcum HKD15 is the engineered strain. Data presented are aver- ages from three plots, five seedlings per plot. Reproduced from Bageshwar, U. K., Srivastava, M., Pardha-Saradhi, P., Paul, S., Gothandapani, S., Jaat, R. S., et al., (2017). An environmentally friendly engineered Azotobacter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield, Applied and Environmental Microbiology 83, 00590 –17. 33 Azotobacters as biofertilizer that the engineered cells were active even after 90 days of sowing ( Bageshwar et al., 2017 ). Ammonium and nitrate in the soil adhering to the roots of wheat plants that grew out of wheat seeds inoculated with A. chroococcum CBD 15 and not inoculated with any Azotobacter were also determined for comparison ( Fig. 6 ). Finally, let us have a look at the yield of wheat crop that was achieved. The yield of wheat crop was enhanced by 60% when no urea was applied, but the seeds were inoculated with the engineered A. chroococcum HKD15 before sowing ( Bageshwar et al., 2017 ). This was in contrast to only 10% yield enhancement by inoculation of the seeds with the wild type A. chroococcum CBD15. When urea was also applied, the same wheat crop yield could be attained by applying 85kg less urea (40kg less nitrogen) per hectare, if the seeds were inoculated with A. chroococcum HKD15 before sowing ( Bageshwar et al., 2017 ). These were the results of trials conducted for 3 years in pots and 1 year in the field ( Bageshwar et al., 2017 ). The actual result of the field trial is shown in Fig. 7 . Bageshwar et al. (2017) also looked for any adverse effect on the native population of microbes in the rhizosphere of the wheat plants that arose from seeds inoculated with the engineered A. chroococcum HKD15. The popula- tion of bacteria, fungi and actinomycetes, that was determined periodically by plating on specific agar medium, was practically unaffected during the one-year field trial. 25. Concluding remarks Azotobacters are being used as biofertilizers since 1902. Azotobacters can fix atmospheric nitrogen, can exude plant hormones, can solubilize phos- phates and can counteract plant pathogens. Wild type Azotobacters have been found beneficial for all types of plants including cereals, oil seeds, fruits, veg- etables, fiber crops and trees. Azotobacters have been engineered for better phosphate solubilizing activity, better excretion of fixed nitrogen, lesser consumption of ammonia, enhanced fixation of atmospheric nitrogen and for sustained nitrogen fixation even in the presence of chemically synthe- sized nitrogenous fertilizers. For better acceptability by environmentalists, engineered Azotobacter has been developed that does not need any inducer, does not have any antibiotic resistance marker and does not have any foreign gene. It has to be appreciated, however, that presently available biofertilizers, whether wild type or engineered, cannot match the ability of chemically synthesized fertilizers to augment crop yield. So, some amount of chemically 34 Hirendra Kumar Das synthesized fertilizers would have to be added along with biofertilizers to achieve the desired yield. The problem is that nitrogen fixation by the wild type fertilizers is completely inhibited by chemically synthesized nitrogenous fertilizers. All chemically synthesized nitrogenous fertilizers produce ammonia and as explained under Section 22 , ammonia activates NifL which inactivates NifA and without NifA no nif gene is expressed. Farmers would always strive for maximum yield and so would only apply biofertilizers that retain their activity, even when some amount of chemi- cally synthesized fertilizers are also added along with. Farmers are also likely to avoid biofertilizers that contain antibiotic resistance genes or need an inducer to activate the biofertilizer. Fig. 7 Effect of inoculation of wheat seeds with the engineered A. chroococcum HKD15 on yield of wheat crop in the field. Each plot was 1.2 m by 3 m and the next plot was 3 m away in all directions. Three replicate plots were used for each treatment and distributed in the field by randomized block design. The amounts of urea applied in the field, as men- tioned in the figure, are in kg of nitrogen per hectare. Crop neither fertilized with urea, nor the sown seeds inoculated with any Azotobacter was considered control (100%). The actual wheat crop yield (average of 3 plots) for the control treatment was 291 g per square meter. The critical difference (equivalent to the least significant difference) at 5% was 69.2, the standard error of the mean was 23.1, and the coefficient of variance was 8.4. Reproduced from Bageshwar, U. K., Srivastava, M., Pardha-Saradhi, P., Paul, S., Gothandapani, S., Jaat, R. S., et al., (2017). An environmentally friendly engineered Azotobac- ter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield, Applied and Environmental Microbiology 83, 00590 –17. 35 Azotobacters as biofertilizer References Ambrosio, R., Ortiz-Marqueza, J. C. F., & Curattia, L. (2017). Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metabolic Engineering, 40, 59 –68. Austin, S., Buck, M., Cannon, W., Eydmann, T., & Dixon, R. (1994). Purification and in vitro activities of the native nitrogen fixation control proteins NifA and NifL. Journal of Bacteriology, 176, 3460 –3465. Bageshwar, U. K., Srivastava, M., Pardha-Saradhi, P., Paul, S., Gothandapani, S., Jaat, R. S., et al. (2017). An environmentally friendly engineered Azotobacter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield. Applied and Environmental Microbiology, 83, e00590 –17. Bali, A., Blanco, G., Hill, S., & Kennedy, C. (1992). Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Applied and Environmental Microbiology, 58, 1711 –1718. Ballesteros, F., Gonzales-Lopez, J., de la Rubia, T., Moreno, J., Aneiros, J., & Romos- Cormenzana, A. (1986). Growth of Azotobacter vinelandii in dialysed soil medium: Studies upon the life cycle. Annales de l’Institut Pasteur. Microbiologie, 137A(1), 55 –64. Barney, B. M., Eberhart, L. J., Ohlert, J. M., Knutson, C. M., & Plunkett, M. H. (2015). Gene deletions resulting in increased nitrogen release by Azotobacter vinelandii: Application of a novel nitrogen biosensor. Applied and Environmental Microbiology, 81, 4316 –4328. Barrett, J., Ray, P., Sobczyk, A., Little, R., & Dixon, A. (2001). Concerted inhibition of the transcriptional activation functions of the enhancer-binding protein NifA by the anti-activator NifL. Molecular Microbiology, 39, 480 –494. Barrios, B., Valderrama, B., & Morett, E. (1999). Compilation and analysis of σ 54 -dependent promoter sequences. Nucleic Acids Research, 27, 4305 –4313. Beijerinck, M. W. (1901). € Uber oligonitrophile Mikroben. Zentralblatt f €ur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Abteilung II, 7, 561 –582. Beniwal, M. S., Karwasara, S. S., Lakshminarayana, K., Narula, N., Dogra, R. C., Behl, R. K., et al. (1996). Integrated management of flag smut of wheat. In Resource management in agriculture (pp. 151 –157). Hisar, India: Choudhary Charan Singh Haryana Agriculture University publication. Bennett, L. T., Jacobson, M. R., & Dean, D. R. (1988). Isolation, sequencing and mutagen- esis of the nifF gene encoding flavodoxin from Azotobacter vinelandii. Journal of Biological Chemistry, 263, 1364 –1369. Beynon, J., Cannon, M., Buchanan-Wollaston, V., & Cannon, F. (1983). The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell, 34, 665 –671. Bishop, P. E., Jarlenski, D. M. L., & Hetherington, D. R. (1980). Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proceedings of the National Academy of Sciences of the United States of America, 77, 7342 –7346. Bishop, P. E., Jarlenski, D. M. L., & Hetherington, D. R. (1982). Expression of an alternative nitrogen fixation system in Azotobacter vinelandii. Journal of Bacteriology, 150, 1244 –1251. Bishop, P. E., & Premakumar, R. (1992). Alternative nitrogen fixation systems. In G. Stacey, R. H. Burris, & H. J. Evans (Eds.), Biological nitrogen fixation (pp. 736 –762). New York: Chapman and Hall. Bishop, P. E., Premakumar, R., Dean, D. R., Jacobson, M. R., Chisnell, J. R., Rizzo, T. M., et al. (1986). Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science, 232, 92 –94. Blanco, G., Drummond, M., Woodley, P., & Kennedy, C. (1993). Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii. Molecular Microbiology, 9, 869 –879. 36 Hirendra Kumar Das Blatny, J. M., Brautaset, T., Winther-larsen, H. C., Haugan, K., & Valla, S. (1997). Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Applied and Environmental Microbiology, 63, 370 –379. Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., et al. (1997). The complete genome sequence of Escherichia coli K-12. Science, 277, 1453 –1462. Brewin, B., Woodley, P., & Drummond, M. (1999). The basis of ammonium release in nifL mutants in Azotobacter vinelandii. Journal of Bacteriology, 181, 7356 –7362. Brigle, K. E., Weiss, M. C., Newton, W. E., & Dean, D. R. (1987). Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK. Journal of Bacteriology, 169, 1547 –1553. Brill, W. J. (1977). Biological nitrogen fixation. Scientific American, 236(3), 68 –81. Brown, M. E., & Burlingham, S. K. (1968). Production of plant growth substances. Journal of General Microbiology, 53, 135 –144. Buck, M., Gallegos, M. T., Studholme, D. J., Guo, Y., & Gralla, J. D. (2000). The bacterial enhancer-dependent _54 (_N) transcription factor. Journal of Bacteriology, 182, 4129 –4136. Buck, M., Miller, S., Drummond, M., & Dixon, R. (1986). Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature (London), 320, 370 –378. Burris, R. H. (1977). Overview of nitrogen fixation. In A. Hollaender (Ed.), Genetic engineer- ing for nitrogen fixation (pp. 9 –18). New York: Springer US. Burris, R. H. (1991). Nitrogenase. Journal of Biological Chemistry, 266, 9339 –9342. Cannon, F. C., Riedel, G. E., & Ausubel, F. M. (1979). Overlapping sequences of Klebsiella pneumoniae “nif” DNA cloned and characterised. Molecular and General Genetics, 174, 59 –66. Chahal, P. P. K., & Chahal, V. P. S. (1988). Biological control of root-knot nematode of brinjal (Solanum melongena L.) with Azotobacter chroococcum. In M. A. Maqbool, A. M. Golden, A. Gbaffilr, & L. R. Krusberg (Eds.), Proceedings of the U.S.-Pakistan international workshop on plant nematology, Karachi, Pakistan (pp. 257 –263). Chakrabarti, D. K., & Yadav, A. L. (1991). Effect of Azotobacter species on incidence of downy mildew (Poronospora arborescens) and growth and yield of opium poppy (Papavar somniferum). Indian Journal of Agricultural Sciences, 61, 287. Chisnell, J. R., Premakumar, R., & Bishop, P. E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. Journal of Bacteriology, 170, 27 –33. Curatti, L., Brown, C. S., Ludden, P. W., & Rubio, I. M. (2005). Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proceedings of the National Academy of Sciences of the United States of America, 102, 6291 –6296. Dean, D. R., & Jacobson, M. R. (1992). Biochemical genetics of nitrogenase. In G. Stacey, R. H. Burris, & H. J. Evans (Eds.), Biological nitrogen fixation (pp. 763 –834). New York: Chapman & Hall. Deubel, A., & Merbach, W. (2005). Influence of microorganisms on phosphorus bioavail- ability in soils. In F. Buscot & A. Varma (Eds.), Soil biology, 3, microorganisms in soils + roles in genesis and functions (pp. 177 –191). Berlin, Heidelberg: Springer-Verlag. Dingler, C., Kuhla, J., Wassink, H., & Oelze, J. (1988). Levels and activities of nitrogenase proteins in Azotobacter vinelandii grown at different dissolved oxygen concentrations. Journal of Bacteriology, 170, 2148 –2152. Ditta, G., Stanfield, S., Corbin, D., & Helinski, D. R. (1980). Broad host range DNA cloning system for gram negative bacteria: Construction of a gene bank of Rhizobium melioti. Proceedings of the National Academy of Sciences of the United States of America, 77, 7347 –7351. 37 Azotobacters as biofertilizer Dixon, R. (1998). The oxygen-responsive NIFL-NIFA complex: A novel two-component regulatory system controlling nitrogenase synthesis in gamma-proteobacteria. Archives of Microbiology, 169, 371 –380. Drummond, M., Clement, K. J., Merrick, M., & Dixon, R. (1983). Positive control and autogenous regulation of the nifLA promoter in Klebsiella pneumoniae. Nature, 301, 302 –307. Eady, R. R. (1996). Structure-function relationships of alternative nitrogenases. Chemical Reviews, 96, 3013 –3030. Elmerich, C. (2015). One hundred years discovery of nitrogen-fixing rhizobacteria. In F. J. de de Brujin (Ed.), Biological nitrogen fixation (pp. 899 –912). Hoboken, New Jersey, U.S.A.: Wiley Blackwell. Fellay, R., Frey, J., & Krish, H. (1987). Interposon mutagenesis of soil and water bacteria: A family of DNA fragments designated for in vitro insertional mutagenesis of gram- negative bacteria. Gene, 52, 145 –154. Gerlach, M., & Vogel, J. (1902). Nitrogen fixing bacteria. Zentralblatt f €ur Bakteriologie, Abt, 2, 817. Haddock, B. A., & Jones, C. W. (1977). Bacterial respiration. Bacteriological Reviews, 41, 47 –99. Hales, B. J., Case, E. E., Morningstar, J. E., Dzeda, M. F., & Maurer, I. A. (1986). Isolation of a new vanadium containing nitrogenase from Azotobacter vinelandii. Biochemistry, 25, 7251 –7255. Hamilton, T. l., Ludwig, M., Dixon, R., Boyd, E. S., Dos Santos, P. C., Setubal, J. C., et al. (2011). Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. Journal of Bacteriology, 193, 4477 –4486. Hausinger, R., & Howard, J. B. (1980). Comparison of iron proteins from nitrogen fixation complexes of Azotobacter vinelandii, Clostridium pasteurium and Klebsiella pneumoniae. Pro- ceedings of the National Academy of Sciences of the United States of America, 77, 3826 –3830. Hill, S., Austin, S., Eydmann, T., Jones, T., & Dixon, R. (1996). Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. Proceedings of the National Academy of Sciences of the United States of America, 93, 2143 –2148. Hirschman, J., Wong, P. K., Sei, K., Keener, J., & Kustu, S. (1985). Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: Evidence that the ntrA product is a sigma factor. Proceedings of the National Academy of Sciences of the United States of America, 82, 7525 –7529. Hoover, T. R., Imperial, J., Ludden, P. W., & Shah, V. K. (1988). Mini review: Biosynthesis of the iron molybdenum cofactor of nitrogenase. BioFactors, 1, 199 –205. Howard, K. S., McLean, P. A., Hansen, F. B., Lemley, P. V., Koblan, K. S., & Orme- Johnson, W. H. (1986). Klebsiella pneumoniae nifM gene product is required for stabili- zation and activation of nitrogenase iron protein in Escherichia coli. The Journal of Biological Chemistry, 261, 772 –778. Jacobitz, S., & Bishop, P. E. (1992). Regulation of nitrogenase 2 in Azotobacter vinelandii by ammonium, molybdenum and vanadium. Journal of Bacteriology, 174, 3884 –3888. Jacobson, M. R., Brigle, K. E., Bennet, L. T., Setterquist, R. A., Wilson, M. S., Cash, V. L., et al. (1989). Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. Journal of Bacteriology, 171, 1017 –1027. Jacobson, M. R., Cash, V. L., Weiss, M. C., Laird, N. F., Newton, W. E., & Dean, D. R. (1989). Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Molecular and General Genetics, 219, 49 –57. Jacobson, M. R., Premakumar, T. R., & Bishop, P. E. (1986). Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. Journal of Bacteriology, 167, 480 –486. 38 Hirendra Kumar Das Joerger, R. D., Jacobson, M. R., & Bishop, P. E. (1989). Two nifA genes required for expres- sion of alternative nitrogenase by Azotobacter vinelandii. Journal of Bacteriology, 171, 3258 –3267. Joerger, R. D., Loveless, T. M., Pau, R. N., Mitchenall, L. A., Simon, B. H., & Bishop, P. E. (1990). Nucleotide sequence and a mutational analysis of the structural genes for nitro- genase 2 of Azotobacter vinelandii. Journal of Bacteriology, 172, 3400 –3408. Joerger, R. D., Premakumar, R., & Bishop, P. E. (1986). Tn5-induced mutants of Azoto- bacter vinelandii affected in nitrogen fixation under Mo-deficient and Mo-sufficient con- ditions. Journal of Bacteriology, 168, 673 –682. Joerger, R. D., Premakumr, R., Wolfinger, E. D., & Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alter- native nitrogenase from Azotobacter vinelandii. Journal of Bacteriology, 171, 1075 –1086. Joerger, R. D., Wolfinger, E. D., & Bishop, P. E. (1991). The gene encoding dinitrogenase reductase 2 is required for expression of the second alternative nitrogenase from Azoto- bacter vinelandii. Journal of Bacteriology, 173, 4440 –4446. Johnson, D. C., Dean, D. R., Smith, A. D., & Johnson, K. (2005). Structure, function, and formation of biological iron-sulfur clusters. Annual Review of Biochemistry, 74, 247 –281. Kelly, M. J. S., Poole, R. K., Yates, M. J., & Kennedy, C. (1990). Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: Mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. Journal of Bacteriology, 172, 6010 –6019. Kennedy, C., & Dean, D. (1992). The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Molecular and General Genetics, 231, 494 –498. Kennedy, C., Rudnick, P., MacDonald, T., & Melton, T. (2005). Genus Azotobacter. In G. M. Garirity (Ed.), Vol. 2. Bergey’s manual of systematic bacteriology (pp. 384 –401). New York: Springer Verlag. part B. Kim, J., & Rees, D. C. (1992a). Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature, 260, 553 –560. Kim, J., & Rees, D. C. (1992b). Structural models for the metal centres in the nitrogenase molybdenum-iron protein. Science, 257, 1677 –1681. Kostychev, S., Sheloumova, A., & Shulgina, O. G. (1926). Investigation of the biodynamics of soils. Microbiologı´a, 1, 5 –6. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., II, et al. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS carrying different antibiotic-resistance cassettes. Gene, 166, 175 –176. Kranz, R. G., & Haselkorn, R. (1986). Anerobic regulation of nitrogen fixing gene in Rhodopseudomonas capsulata. Proceedings of the National Academy of Sciences of the United States of America, 83, 6805 –6809. Kukreja, K., Suneja, S., Goyal, S., & Narula, N. (2004). Phytohormone production by Azotobacter—A review. Agricultural Reviews, 25, 70 –75. Kumar, V., Behl, R. K., & Narula, N. (2001). Effect of phosphate solubilizing strains of Azotobacter chroococcum on yield traits and their survival in the rhizosphere of wheat genotypes under field conditions. Acta Agronomica Hungarica, 49, 141 –149. Kumar, V., & Narula, N. (1999). Solubilization of inorganic phosphates and growth emegence of wheat as affected by A. chroococcum mutants. Biology and Fertility of Soils, 28, 301 –305. Lakshminarayana, K. (1993). Influence of Azotobacter on nitrogen nutrition of plants and crop productivity. Proceedings of the Indian National Science Academy, B59, 303 –308. Little, R., Colombo, V., Leech, A., & Dixon, R. (2002). Direct interaction of the NifL regulatory protein with the GlnK signal transducer enables the Azotobacter vinelandii NifL-NifA regulatory system to respond to conditions replete for nitrogen. Journal of Bio- logical Chemistry, 277, 15472 –15481. 39 Azotobacters as biofertilizer Little, R., & Dixon, R. (2003). The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting condi- tions. Journal of Biological Chemistry, 278, 28711 –28718. Little, R., Martinez-Argudo, I., & Dixon, R. (2006). Role of the central region of NifL in conformational switches that regulate nitrogen fixation. Biochemical Society Transactions, 34, 162 –164. Little, R., Martinez-Argudo, I., Perry, S., & Dixon, R. (2007). Role of the H domain of the histidine kinase-like protein NifL in signal transmission. Journal of Biological Chemistry, 282, 13429 –13437. Little, R., Reyes-Ramirez, F., Zhang, Y., van Heeswijk, W. C., & Dixon, R. (2000). Signal transduction to the Azotobacter vinelandii NIFL-NIFA regulatory system is influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein. EMBO Jour- nal, 19, 6041 –6050. Luque, F., & Pau, R. N. (1991). Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. Molecular and General Genetics, 227, 481 –487. Maier, R. J., & Moshiri, F. (2000). Role of the Azotobacter vinelandii nitrogenase-protective Shethna protein in preventing oxygen-mediated cell death. Journal of Bacteriology, 182, 3854 –3857. Maldonado, R., Jimenez, J., & Casadesus, J. (1994). Changes of ploidy during the Azotobacter vinelandii growth cycle. Journal of Bacteriology, 176, 3911 –3919. Martinez-Argudo, I., Little, R., Shearer, N., Johnson, P., & Dixon, R. (2005). Nitrogen fix- ation: Key genetic regulatory mechanisms. Biochemical Society Transactions, 33, 152 –156. Martinez-Argudo, I., Richard, L., & Dixon, R. (2004). A crucial arginine residue is required for a conformational switch in NifL to regulate nitrogen fixation in Azotobacter vinelandii. Proceedings of the National Academy of Sciences of the United States of America, 101, 16316 –16321. Martinez-Noel, G., Curatti, L., Hernandez, J. A., & Rubio, L. M. (2011). NifB and NifEN protein levels are regulated by Clpx2 under nitrogen fixation conditions in Azotobacter vinelandii. Molecular Microbiology, 79, 1182 –1192. Medhora, M., Phadnis, S. H., & Das, H. K. (1983). Construction of a gene library from the nitrogen-fixing aerobe Azotobacter vinelandii. Gene, 25, 355 –360. Meshram, S. U. (1984). Suppressive effect of Azotobacter chroococcum on Rhizoctonia solani infestation of potatoes. Netherlands Journal of Plant Pathology, 90, 127 –132. Minchin, S. D., Austin, S., & Dixon, R. A. (1989). Transcriptional activation of Klebsiella pmneuoniae nifLA promoter by NtrC is face-of-the-helix dependent and the activator stabilizes the interaction of sigma 54-RNA polymerase with the promoter. EMBO Jour- nal, 8, 3491 –3499. Mitra, R., Das, H. K., & Dixit, A. (2005). Identification of a positive transcription regulatory element within the coding region of the nifLA operon in Azotobacter vinelandii. Applied and Environmental Microbiology, 71, 3716 –3724. Money, T., Barrett, J., Dixon, R., & Austin, S. (2001). Protein-protein interactions in the complex between the enhancer binding protein NifA and the sensor. Journal of Bacteri- ology, 183, 1359 –1368. Money, T., Jones, T., Dixon, R., & Austin, S. (1999). Isolation and properties of the complex between the enhancer binding protein NifA and the sensor NifL. Journal of Bacteriology, 181, 4461 –4468. Moshiri, F., Crouse, B. R., Johnson, M. K., & Maier, R. J. (1995). The “Nitrogenase- protective” FeSII protein of Azotobacter vinelandii: Overexpression, characterization, and crystallization. Biochemistry, 34, 12973 –12982. Moshiri, F., Kim, J. W., Fu, C., & Maier, R. J. (1994). The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase. Molecular Microbiology, 14, 101 –114. 40 Hirendra Kumar Das Moshiri, F., Smith, E. G., Taormino, J. P., & Mayer, R. J. (1991). Transcriptional regulation of cytochrome d in nitrogen-fixing Azotobacter vinelandii. Evidenve that up regulation during N 2 -fixation is dependent on ntrA. Journal of Biological Chemistry, 266, 23169 –23174. Mrkovac-ki, N., & Milic, V. (2001). Use of Azotobacter chroococcum as potentially useful in agricultural application. Annals of Microbiology, 51, 145 –158. Nag, P., & Pal, S. (2013). Fe protein over-expression can enhance the nitrogenase activity of Azotobacter vinelandii. Journal of Basic Microbiology, 53, 156 –162. Nagpal, P., Jafri, S., Reddy, M. A., & Das, H. K. (1989). Multiple chromosomes of Azotobacter vinelandii. Journal of Bacteriology, 171, 3133 –3138. Newton, W. E. (2015). Recent advances in understanding nitrogenases and how they work. In F. J. de Brujin (Ed.), Biological nitrogen fixation (pp. 7 –20). Hoboken, New Jersey, U.S.A.: Wiley Blackwell. Nieto, K. F., & Frankenberger, W. T. (1989). Biosynthesis of cytokinins by Azotobacter chroococcum. Soil Biology and Biochemistry, 21, 967 –972. Nieto, K. F., & Frankenberger, W. T. (1991). Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the vegetative growth of Zea mays. Plant and Soil, 135, 213 –221. Ortiz-Marquez, J. C. F., Nascimento, M. D., de los Angeles Dublan, M., & Curatti, L. (2012). Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae. Applied and Environmental Microbiology, 78, 2345 –2352. Ow, D. W., & Ausubel, F. M. (1983). Regulation of nitrogen metabolism by nifA gene product in Klebsiella pneumoniae. Nature, 301, 307 –313. Pandey, A., & Kumar, S. (1990). Inhibitory effect of Azotobacter chroococcum and Azospirillum brasilense on a range of rhizosphere fungi. Indian Journal of Experimental Biology, 28, 52 –54. Paul, S., & Paul, B. (2009). Azotobacter—Recent advances. In R. K. Gupta, M. Kumar, & D. Vyas (Eds.), Soil microflora (pp. 279 –314). New Delhi, India: Daya Publishing House. Paul, S., Paul, B., & Verma, O. P. (2002). Effect of Azotobacter chroococcum on lepidopteran insects. New Botanist, 29, 163 –168. Poole, R. K., & Hill, S. (1997). Respiratory protection of nitrogenase activity in Azotobacter vinelandii—Roles of the terminal oxidases. Bioscience Reports, 17, 303 –317. Popham, D. L., Szeto, D., Keener, J., & Kustu, S. (1989). Function of bacterial activator protein that binds to transcriptional enhancers. Science, 243, 629 –635. Poza-Carrion, C., Echavarri-Erasun, C., & Rubio, L. M. (2015). Regulation of nif gene expression in Azotobacter vinelandii. In F. J. de Brujin (Ed.), Biological nitrogen fixation (pp. 101 –107). Hoboken, New Jersey, U.S.A.: Wiley Blackwell. Poza-Carrion, C., Jimenez-Vicente, E., Navarro-Rodriguez, M., Echavarri-Erasun, C., & Rubio, L. M. (2014). Kinetics of nif gene expression in a nitrogen-fixing bacterium. Journal of Bacteriology, 196, 595 –603. Prasad, R. (2009). Efficient fertilizer use—The key to food security and better environment. Journal of Tropical Agriculture, 47, 1 –17. Raina, R., Bageshwar, U. K., & Das, H. K. (1992). Construction of vnfH::lacZ fusion and study of expression from vnfH promoter of the vanadium-dependent nitrogen fixation pathway in Azotobacter vinelandii. FEMS Microbiology Letters, 98, 169 –174. Raina, R., Bageshwar, U. K., & Das, H. K. (1993a). The Azotobacter vinelandii nifL- like gene: Nucleotide sequence analysis and regulation of expression. Molecular and General Genetics, 237, 400 –406. Raina, R., Bageshwar, U. K., & Das, H. K. (1993b). The ORF encoding a putative ferredoxin-like protein downstream of the vnfH gene in Azotobacter vinelandii is involved in the vanadium-dependent alternative pathway of nitrogen fixation. Molecular and General Genetics, 236, 459 –462. 41 Azotobacters as biofertilizer Raina, R., Reddy, R., Ghosal, D., & Das, H. K. (1988). Characterisation of the gene for the Fe-protein of the vanadium dependent alternative nitrogenase of Azotobacter vinelandii and construction of a Tn5 mutant. Molecular and General Genetics, 214, 121 –127. Ramos, J. L., & Robson, R. L. (1985a). Isolation and properties of mutants of Azotobacter chroococcum defective in aerobic nitrogen fixation. Journal of General Microbiology, 131, 1449 –1458. Ramos, J. L., & Robson, R. L. (1985b). Lesions in citrate synthase that affect aerobic nitrogen fixation in Azotobacter chroococcum. Journal of Bacteriology, 162, 746 –751. Reyes-Ramirez, F., Little, R., & Dixon, R. (2001). Role of Escherichia coli nitrogen regula- tory genes in the nitrogen response of the Azotobacter vinelandii NifL-NifA complex. Journal of Bacteriology, 183, 3076 –3082. Reyes-Ramirez, F., Little, R., & Dixon, R. (2002). Mutant forms of the Azotobacter vinelandii transcriptional activator NifA resistant to inhibition by the NifL regulatory protein. Jour- nal of Bacteriology, 184, 6777 –6785. Robson, R. (1979). Characterization of an oxygen-stable nitrogenase complex isolated from Azotobacter chroococcum. Biochemical Journal, 181, 569 –575. Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., & Postgate, J. R. (1986). The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature, 322, 388 –390. Robson, R. L., Jones, R., Robson, R. M., Schwartz, A., & Richardson, T. H. (2015). Azotobacter genomes: The genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412). Plos One, 10(6), e0127997. Robson, R. L., & Postgate, J. R. (1980). Oxygen and hydrogen in biological nitrogen fixation. Annual Review of Microbiology, 34, 183 –207. Robson, R. L., Woodely, P. R., Pau, R. N., & Eady, R. R. (1989). Structuiral genes for the vanadium nitrogenase from Azotobacter chroococcum. EMBO Journal, 8, 1217 –1224. Robson, R. L., Woodley, P. R., & Jones, R. (1986). Second gene (nifH *) coding for a nitrogenase iron-protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. EMBO Journal, 5, 1159 –1163. Rubio, L. M., & Ludden, P. W. (2008). Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annual Review of Microbiology, 62, 93 –111. Rubio, L. M., Rangaraj, P., Homer, M. J., Roberts, G. P., & Ludden, P. W. (2002). Cloning and mutational analysis of the gamma gene from Azotobacter vinelandii defines a new family of proteins capable of metallocluster binding and protein stabilization. Journal of Biological Chemistry, 277, 14299 –14305. Rudnick, P., Kunz, C., Gunatilaka, M. K., Hines, E. R., & Kennedy, C. (2002). Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii. Journal of Bacteriology, 184, 812 –820. Ruttimann-Johnson, C., Rubio, L. M., Dean, D. R., & Ludden, P. W. (2003). VnfY is required for full activity of the vanadium-containing dinitrogenase in Azotobacter vinelandii. Journal of Bacteriology, 185, 2383 –2386. Sadoff, H. L., Berke, E., & Loperfido, B. (1971). Physiological studies of encystment of Azotobacter vinelandii. Journal of Bacteriology, 105, 185 –189. Sadoff, H. L., Shimel, B., & Ellis, S. (1979). Characterization of Azotobacter vinelandii deoxyribonucleic acid and folded chromosomes. Journal of Bacteriology, 138, 871 –877. Sashidhar, B., & Podile, A. R. (2009). Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnology, 2, 521 –529. Scherings, G., Haaker, H., Wassink, H., & Veeger, C. (1983). On the formation of an oxygen-tolerant three-component nitrogenase complex from Azotobacter vinelandii. European Journal of Biochemistry, 135, 591 –599. 42 Hirendra Kumar Das Schmitz, R. A., Klopprogge, K., & Grabbe, R. (2002). Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA. Journal of Molecular Microbiology and Biotechnology, 4, 235 –242. Setubal, J. C., et al. (2009). Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. Journal of Bacteriology, 191, 4534 –4545. Shah, V. K., & Brill, W. J. (1977). Isolation of an iron-molybdenum cofactor from nitroge- nase. Proceedings of the National Academy of Sciences of the United States of America, 74, 3249 –3253. Shethna, Y. I., Wilson, P. W., & Beinet, H. (1966). Purification of a non-heme iron protein and other electron components from Azotobacter extracts. Biochimica et Biophysica Acta, 113, 225 –230. Sivasakthi, S., Saranraj, P., & Sivasakthivelan, P. (2017). Biological nitrogen fixation by Azotobacter sp.—A review. Indo –Asian Journal of Multidisciplinary Research, 3, 1274–1284. Smith, B. E., Richards, R. L., & Newton, W. E. (2004). Catalysts for nitrogen fixation. Dordrecht: Kluwer/Springer. S €oderb€ack, E., Reyes-Ramirez, F., Eydmann, T., Austin, S., Hill, S., & Dixon, R. (1998). The redox- and fixed nitrogen-responsive regulatory protein NIFL from Azotobacter vinelandii comprises discrete flavin and nucleotide-binding domains. Molecular Microbiol- ogy, 28, 179 –192. Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H., & Winiwarter, W. (2011). Too much of a good thing. Nature, 472, 159 –161. Taylor, B. L., & Zhulin, I. B. (1999). PAS domains: Internal sensors of oxygen, redox poten- tial, and light. Microbiology and Molecular Biology Reviews, 63, 479 –506. Vela, G. R., & Rosenthal, R. S. (1972). Effect of peptone on Azotobacter morphology. Journal of Bacteriology, 111, 260 –266. Wilson, P. W., & Knight, S. C. (1952). Experiments in bacterial physiology (p. 49). Burguess: Minneapolis, USA. Wolfinger, E. D., & Bishop, P. E. (1991). Nucleotide sequence and mutational analysis of the vnfENX region of Azotobacter vinelandii. Journal of Bacteriology, 173, 7565 –7572. Xu, H., & Hoover, T. R. (2001). Transcriptional regulation at a distance in bacteria. Current Opinion in Microbiology, 4, 138 –144. Yates, M. G. (1992). The enzymology of molybdenum dependent nitrogen fixation. In G. Stacey, R. H. Burris, & H. J. Evans (Eds.), Biological nitrogen fixation (pp. 685 –735). New York: Chapman and Hall. Zhang, W.-F., Dou, Z.-X., He, P., Ju, X.-T., Powlson, D., Chadwick, D., et al. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 110, 8375 –8380. Zheng, L., White, R. H., & Dean, D. R. (1997). Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase. Journal of Bacteriology, 179, 5963 –5966. Zhulin, I. B., Taylor, B. L., & Dixon, R. (1997). PAS domain S-boxes in Archea, Bacteria and sensors for oxygen and redox. Trends in Biochemical Sciences, 22, 331 –333. 43 Azotobacters as biofertilizer Download 1.58 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling