BINOMIAL DISTRIBUTION (0,1 sucesso) espaço amostral !P D = . P s . (1 â P s )! sucesso espaço amostral ! !P D = . P s . (P s ) sucesso S P Sucesso = P s . P(s) s !â! !â! c! P D = . P a ! . (1 â P a )! a! c â a ! PROBABILIDADE TOTAL (urnas) P B = P A â© B = P A . P(B|A) PROBABILITY k SUCCESS in n TRIALS n !P k in n = . p . (1 â p)!!! k INTEGRAIS ! F b â F a ! ! 1 1 1 x ! dx = x! = 2! â 1! ! 3 3 3 PRODUCT RULE c. fâ² x . dx = c fâ² x . dx CHAIN RULE f x + g x . dx = f x . dx + g x . d(x) INTEGRATION Îx = 0 fâ² x . Îx N â â DIFFERENTIATION f a + Îx â f(a) lim !â! Îx LINEAR ALGEBRA ADDITION 1 2 2 2 2 4 + = 4 3 5 3 9 6 SCALAR MULTIPLY 2 2 6 6 3 â = 5 3 15 9 MATRIX VECTOR MULTIPLICATION Linhas x Colunas x Vetor: Colunas A = Linhas B A!,! â B !,! = C !,! 0 3 6 1 1 3 â = 7 2 2 4 9 1 2 3 1 5 1 4 5 â 2 = 9 0 3 2 0 6 OU 1 2 3 1 1 2 3 5 1 4 5 â 2 = 1 â 1 + 2 â 4 + 0 â 5 = 90 3 2 0 0 3 2 6 x Matrix: Colunas A = Linhas B Linhas A = Colunas B A2,1 = 2a linha x 1a coluna 0 3 1 2 3 8 24 â 1 3 = 0 4 5 14 37 2 5 1 2 3 1 2 0 â 4 5 6 = 12 30 0 7 8 9 IMPORTANTE A2,3 = 2a linha x 3a coluna 1 0 0 1 2 1 â3 1 0 â 3 8 1 = 0 0 1 0 4 1 A !,! A !,! A !,! 1 2 1 = A !,! A !,! A !,! = 0 2 â2 A!,! A!,! A!,! 0 4 1 PERMUTATION LEFT=exchange rows 0 1 a b c d â = 1 0 c d a b RIGHT=exchange columns a b 0 1 b a â = c d 1 0 d c IDENTIDADE 1 0 0 0 1 0 0 0 1 DIAGONAL 2 0 0 0 2 0 0 0 2 TRANSPOSE 1 4 1 2 3 ! A = A = 2 5 4 5 6 3 6
Do'stlaringiz bilan baham: |