Bizga ikkita diferensiallanuvchi u(X) va v(X) funksiyalar berilgan


Download 1.17 Mb.
bet2/2
Sana07.04.2023
Hajmi1.17 Mb.
#1338750
1   2
Bog'liq
bo0laklab-integrallash-va-ratsional-kasrlarni-integrallash

 ... 


(x b)k
x2px q
(x2px q)2
 ... 

M n x Nn
 ... 

C1 x D1
 ... 

Cr x Dr


(*)

(x 2px q) n
x 2cx d
(x 2cx d ) r

bu yerda Am,...,Bk,...,Mn,...Nn,...,Cr,...,Dr lar o’zgarmas sonlar. Q(x) necha karrali ildizga ega bo’lsa, sxemadagi elementar kasrlar soni shuncha bo’ladi.


v) Hosil bo’lgan (*) tenglikni har ikki tomonini Q(x) ga ko’paytirish bilan kasrni maxrajdan qutqaramiz.
g) Кeyin hosil bo’lgan tenglikni har ikki tomonidagi x ning bir xil darajalari oldidagi koeffitsientlarni tenglashtirib, tenglamalar sistemasini hosil qilamiz.
Bu sistemadagi tenglamalar soni A1, ..., B1, ..., M1, ..., N1, ..., C1,..., D1, ..., noma’lumlar soniga teng bo’lishi kerak.
d) Hosil bo’lgan tenglamalar sistemasi yechilib, noma’lum koeffitsientlar topiladi va ular (*) ayniyatga qo’yiladi va ikki tomoni dx ga ko’paytirilib, integrallanadi. Hosil bo’lgan elementar kasrlar (1)-(4) ko’rinishdagi kasrlardan iborat bo’ladi.
3x 2  8

Miso l.1.
x 3  4x 2  4xdx
hisoblansin.

Yechish. Integral ostidagi kasrning maxrajini ko’paytuvchilarga ajratamiz.
x3+4x2+4x=x(x2+4x+4)=x(x+2)2
Endi berilgan kasrni (*) dan foydalanib, elementar kasrlarga yoyamiz:
3x2  8

x(x  2)2
A
x

B
x  2
C
(x  2)2

(**)


buni har ikki tomonini x(x+2)2 ga ko’paytiramiz.
3x2+8=A(x+2)2+Bx(x+2)+Cx=(A+B)x2+(4A+2B+C)x+4A
Endi x ni bir xil darajalari oldidagi koeffitsientlarini tenglashtirib, tenglamalar sistemasini tuzamiz:
A B  3


4 A  2B C  0


4 A  8
Bu sistemani yechib, A=2, B=1, C=-10 larni topamiz. So’ngra bularni (**) ga qo’yamiz.

3x 2  8 2 1 10


x(x  2)2 x x  2 (x  2)2
Buni ikki tomonini dx ga ko’paytirib, keyin integrallaymiz:

3x 2  8
2 1 10

x3  4x 2  4xdx [ x x 2 (x  2)2 ]dx
 2 dx dx 10 (x  2)2 d (x  2) 

x
x 3  4x 2
x  2
=2ln|x|+ln|x+2|+10/(x+2)+C
 2x  1

Misol 2. 
x 4x dx
hisoblansin.

Yechish. Berilgan kasrni elementar kasrlarga ajratamiz. Buning uchun maxrajdagi ko’phadni ko’paytuvchilarga ajratamiz
x4+x=x(x3+1)=x(x+1)(x2-x+1)

x 3  4x 2  2x  1 A B
Cx D

x 4x x x  1 x 2x  1
x3+4x2-2x+1=A(x3+1)+Bx(x2-x+1)+(Cx+D)(x2+x)=
=(A+B+C)x3+(C+D-B)x2+(B+D)x+A
Endi x larning bir xil darajalari oldidagi koeffitsientlarni tenglashtirish bilan noma’lum A, B, C, D larni aniqlash uchun qo’yidagi 4 ta tenglamani hosil qilamiz, hamda bu tenglamalar sistemasini yechib, A, B, C, D noma’lumlarni aniqlaymiz:

A B C  1
C D B  4
A  1
B  2



B D  2
A  1
C  2
D  0

Topilganlarni noma’lumlar o’rniga qo’yib kasrni elementar kasrlar orqali ifodasini yozamiz:
x 3  4x 2  2x  1 1 2 2x
x 4x x x  1 x 2x  1


endi buni integrallaymiz.

J
x 3  4x 2
x 4
 2x  1
  • x dx 

dx 2


x

dx 2


x  1
xdx
x 2x  1

=ln|x|-2ln|x+1|+2J1


J1 integralda x2-x+1 dan to’la kvadrat ajratamiz:
x2-x+1=(x-1/2)2+3/4 Bunda x-1/2=t dx=dt deb olamiz. U holda J1 qo’yidagicha hisoblanadi.

(t  1 / 2)dt 1
J  
2tdt 1


dt
1 ln(t 2

 3 / 4) 



1  t 2
 3 / 4

2t 2
 3 / 4

2t 2
 3 / 4 2

  • 1 arctg 2t

1 ln(x 2
2

x  1) 
1 2x  1
arctg .

Natijada J integral qo’yidagicha aniqlanadi:
| x|(x 2x  1) 2


2x  1

J  ln
(x  1)2
arctg C

(x 3  3)dx

Miso l.3.
x 4
 10x 2
 25
hisoblansin.

Yechish. Maxrajni ko’paytuvchilarga ajratamiz:

x4 10x2
 25  (x2
 5)2

x3  3
x4 10x2  25
Ax B
x2  5
Cx D


(x2  5)2

x3  3  (Ax B)(x2  5)  Cx D Ax3Bx2  (5A C)x  (5B D)

A 1


B  0
A  1
B  0



5A C  0
C  5

5B D  3 D  3

Buni integrallaymiz:


x3  3
x4 10x2  25
x
x2  5
5x  3


(x2  5)2

x3  3
xdx
xdx dx

J
x 4  10x 2  25 dx x 2  5 5 (x 2  5)2
3 (x 2  5)2 .

––
J1
––
J 2
––
J3

xdx
1 2xdx
1 d (x 2  5) 1 2

J1
x 2  5 2
x 2  5 2
x 2  5
 ln(x
2
 5)

xdx
1 2 2 2
1 (x 2  5)1 1

J 2
(x 2  5)2
2 (x
 5)
d (x
 5) 
2
 
1 2(x 2  5)

J3 integralda o’zgaruvchini almashtiramiz:

x  5tgzdx
dx
5 sec2 zdz
5 sec2 zdz 1 2

J3
(x2  5)2

25sec4 z
cos
zdz

1
(1 cos 2z)dz 1
(z 1 sin 2z) 
2
1 (arctg
x  ).
x2  5

Berilgan integral qo’yidagiga teng bo’ladi:

J 1 ln( x 2  5) 
5 3
(arctg
x x
5 )  C

2 2(x 2  5) x 2  5

1 ln( x 2  5) 
2
25  3x
10(x 2  5)
3 arctg
x C.

Download 1.17 Mb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling