Boshqaruv hisobini tashkil etish


Download 243.2 Kb.
bet11/12
Sana04.02.2023
Hajmi243.2 Kb.
#1160105
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
Boshqaruv hisobini tashkil etish

S ³ 0 va L ³ 0

«L»

50 72 100 120 150 200 250 birligi
Ushbu rasmda 1 va 2-sexlar uchun materiallar yetishmasligi natijasidagi mavjud cheklashlarni aks ettiruvchi uchta chiziq ko’rsatilgan grafik tasvirlangan4.
Grafikdagi – qabul qilinishi mumkin bo’lgan qarorlar sohasi mahsulotlarning mumkin bo’lgan kombinatsiyalari chegarsini, ya’ni S va L albomlari sonining barcha cheklovchi omillarni qanoatlantiradigan kombinatsiyasini ko’rsatadi. Bu soha grafikda shtrixlangan.
3-bosqich, optimal yechimni topish uchun dastlab xatolar va sinash usulini, keyin esa grafik usulni ko’rib chiqamiz.
Tadqiqotlar natijasi ko’rsatishicha, optimal yechimni aniqlashning bir qator usullari mavjud2.
Ana shu usullardan rivojlangan demokratik mamlakatlar xo’jalik yurituvchi subyektlari faoliyatida samarali foydalaniladiganlaridan biri - xatolar va sinash usulidir. Bu usul oddiy va qo’llashga juda amaliy bo’lib - optimal yechim mumkin bo’lgan qarorlar sohasi burchaklari koordinatlarini tanlash natijasida topilishi mumkin.
Dastavval, qandaydir burchak nuqtasi tanlab olinadi va unda jami marjinal foyda miqdori hisoblaniladi. Rasmdan ko’rinib turibdiki, mumkin bo’lgan qarorlar sohasi beshta burchak nuqtasiga ega. Bir vaqtning o’zida koordinatlarni tekshirish uchun tenglamadan foydalanish qulaydir. Masalan, (S = 72; L = 96) nuqta ikkita mos cheklovlar – tenglamalar tizimi ko’rinishidagi tengsizliklarni yechish yo’li bilan topilishi mumkin:
Demak, mahsulotning optimal tarkibi S turdagi 72 ta albom va L turdagi 96 ta albomni ishlab chiqarish xo’jalik yurituvchi subyekt uchun eng ma’qul variantligini ko’rsatib turibdi.
Ta’kidlash joizki, xatolar va sinash usuli, shuningdek grafik usul ikkita yoki ko’pi bilan uchta o’zgaruvchi bo’lgan holdagina foydalidir. Chiziqli dasturlashning ko’p o’zgaruvchili masalalarini yechish uchun bu usullarni qo’llab bo’lmaydi5.
Bunday holatlarda personal kompyuterlar uchun standart dasturlar paketi simpleks usulidan foydalangan holda optimal yechimni topadi.
Ana shunday holatlarda chet mamlakatlardagi xo’jalik yurituvchi subyektlar menejerlari grafik usuldan foydalanishadi2.
Grafik usulga muvofiq, optimal qaror, qabul qilish mumkin bo’lgan qarorlar sohasining burchak nuqtalaridan birida joylashgan bo’lishi lozim. Nega shundayligini oldingi misolni davom ettirib ko’rish mumkin. Bir xil masalan, 1 mln. so’mga teng bo’lgan marjinal foyda beradigan, barcha mumkin bo’lgan kombinatsiyalarni ko’rib chiqamiz. Boshqacha aytganda, quyidagilarga egamiz:
200 x S + 250 x L = 1 000 000
Bu marjinal foydasi 1 mln. so’mga teng bo’lgan qiymatlar to’plami (S =500; L =0) va (S =0; L =400) nuqta orqali o’tuvchi to’g’ri punktir chiziq bilan berilgan. Jami marjinal foydaga teng bo’lgan boshqa to’plamlar ko’rsatilgan chiziqqa parallel chiziqlar bilan ifodalanadi. Rasmda shunday chiziqlardan uchtasini ko’rishimiz mumkin. Chiziqlar dastlabki holatidan uzoqlashgan sari jami marjinal foyda ko’payadi.
Optimal chiziq dastlabki, ya’ni mumkin bo’lgan qarorlar sohasi bilan umumiy nuqtaga ega bo’lgan chiziqdan eng uzoqda joylashgan chiziqdir. Bu nuqta (S =72; L =96) koordinatlarga ega bo’lgan burchak nuqtadir. Umuman aytganda, maksimallashtirish masalalari uchun optimal qaror mumkin bo’lgan qarorlar sohasining eng chekka nuqtasini punktir chiziq (marjinal foydaga teng bo’lgan chiziq) kesib o’tuvchi burchak nuqtasida joylashgan. Maqsad funksiyasining jami marjinal foydaga (JMF) teng bo’lgan (punktir chiziqning) og’ish burchagi quyidagi tenglamadan topilishi mumkin:
JMF = 200 x S + 250 x L
Og’ish burchagini (S ga bitta birlik qo’shilishi natijasida, L ning o’zgarish miqdorini) topish uchun L o’zgarganda tenglamani koeffitsientga ajratish va keyin Lni tenglamani chap tomoniga o’tkazish kerak:
JMF / 250 = 200 / 250 x S + L
L = (JMF / 250 – 200 / 250) x S L = (JMF / 250 – 4 / 5) x S


Download 243.2 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling