Центр масс теорема о движении центра масс. Неинерциальные системы отсчета. Силы инерции физический смысл массы
любого отступления от законов геометрической оптики
Download 0.84 Mb.
|
mavzular ruscha
любого отступления от законов геометрической оптики. При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в то же время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде, которое дифракцией не является. Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации, в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу. Еще один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).
Общим свойством всех эффектов дифракции является именно определенная зависимость данного явления от соотношения между длиной волны и размером неоднородностей среды. Поэтому дифракция представляет собой универсальное волновое явление и характеризуется одними и теми же законами в случае волн разной природы. В качестве примера рассмотрим дифракционную картину возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Математическое представление принципа Гюйгенса используется для написания исходного уравнения. Рассмотрим монохроматическую плоскую волну с амплитудой с длиной волны λ падающую на экран с щелью, ширина которой a. Если разрез находится в плоскости x′-y′, с центром в начале координат, тогда может предполагаться, что дифракция производит волну ψ на расстоянии r, которая расходится радиально и вдалеке от разреза можно записать: пусть (x′,y′,0) — точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x,0,z). Щель имеет конечный размер в x направлении (от до ), и бесконечна в y направлении ([ , ]). Расстояние r от щели определяется как: Предполагая случай дифракции Фраунгофера, получим условие . Другими словами, расстояние до точки наблюдения много больше характерного размера щели (ширины). Используя биноминальное разложение и пренебрегая слагаемыми второго и выше порядков малости, можно записать расстояние в виде: Видно, что 1/r перед уравнением не осциллирует, то есть даёт малый вклад в интенсивность по сравнению с экспоненциальным множителем. И тогда его можно записать приближённо как z.
Здесь мы введём некую константу 'C', которой обозначим все постоянные множители в предыдущем уравнении. Она, в общем случае может быть комплексной, но это не важно, так как в конце нас будет интересовать только интенсивность, и нам будет интересен только квадрат модуля. В случае диффракции фраунгофера мало, поэтому . такое же приближение верно и для . Таким образом, считая , приводит к выражению:
Используя формулу Эйлера и её производную: и . где ненормированная синкус функция определена как . Подставляя в последнее выражение для амплитуды, можно получить ответ для интенсивности в виде I волны в зависимости от угла θ:
Download 0.84 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling