Chiziqli algebra fanidan nazariy savollar Mаtritsа tа’rifi asosiy tushunchalari. Mаtritsаlаrning o‘lchamlari. Teng matritsalar. Diagonal, skalyar va birlik matritsalar


Download 224.51 Kb.
bet3/4
Sana19.06.2023
Hajmi224.51 Kb.
#1617887
1   2   3   4
Bog'liq
chiziqli

+

  • Ayirish: -

  • Ko'paytirish: *

  • Bo'lish: /

  • Darajaga oshirish: ** (misol uchun, x**2 ifodasi x ni kvadratga oshiradi)

    1. Bitta chiziqli operatorning turli bazislardagi matritsalari orasidagi bog'lanish haqidagi teorema Matritsalar teorisi bo'yicha bog'lanish haqida gaplashadi. Ushbu teorema chiziqli operatorlar bilan bog'langan matritsalarni qo'llab-quvvatlaydi. Agar A va B matritsalari bo'lsin, A ni n x m o'lchamli va B ni m x p o'lchamli matritsalarga ega bo'lsin. U holda, A bilan B ni ko'paytirish uchun A matritsasining ust tomonini B matritsasining chap tomoniga tenglashtirish talab etiladi. Natijada hosil bo'lgan matritsa C ni qo'llab-quvvatlash, ikkita matritsa orasidagi bog'lanish haqida gaplashadigan chiziqli operatorlarni ko'rsatadi.

    O'tish matritsasi esa quyidagi ko'rinishga ega bo'ladi:
    [ 1 0 ] [ 1 0 ] [ 0 1 ]
    [ 0 1 ]
    Bu matritsa, o'lchamlariga qarama-qarshi identitet matritsasiga o'xshaydi. Barcha elementlari diagonallarda joylashgan bo'lib, boshqa elementlar esa 0 ga teng. Bu o'tish matritsasi, matritsa elementlarini o'zgartirmasdan va ulardan qo'shmasdan saqlaydi.

    1. Operatorning xos soni va xos vektori bilan quyidagi ko'rinishda ta'riflanadi:

    • Xos son: Agar A bir chiziqli operator bo'lsin, A ning xos soni esa lambda (λ) bilan ifodalanadi. Xos son A operatorning eigenvalue'lari yoki o'zi o'zining karateristik tenglamasi yoki xususiy tenglamasi orqali topiladi. Xos sonni topish uchun quyidagi tenglamani yechishimiz kerak: (A - λI) |v> = 0, bu yerda (A - λI) matritsa, I identitet matritsasi, |v> esa 0 dan farqli bo'lgan vektor. Natijada hosil bo'lgan λ qiymati xos son bo'ladi.

    • Xos vektor: Xos vektor A operatorning eigenvalue'i (xos soni) uchun bog'liq bo'lgan vektorni ifodalaydi. Xos vektorni topish uchun quyidagi tenglamani yechishimiz kerak:
      Download 224.51 Kb.

      Do'stlaringiz bilan baham:
  • 1   2   3   4




    Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
    ma'muriyatiga murojaat qiling