Computational
Download 0.65 Mb.
|
Maqola engilsh
ReferencesGSL - GNU Scientific Library, http://www.gnu.org/software/gsl/. T. Abatzoglou, J. Mendel, G. Harada, The constrained total least squares technique and its application to harmonic superresolution, IEEE Trans. Signal Process. 39 (1991) 1070–1087. M. Aoki, P.C. Yue, On a priori error estimates of some identification methods, IEEE Trans. Automatic Control 15 (5) (1970) 541–548. Y. Bresler, A. Macovski, Exact maximum likelihood parameter estimation of superimposed exponential signals in noise, IEEE Trans. Acoust. Speech Signal Process. 34 (1986) 1081–1089. J. Cadzow, Signal enhancement—a composite property mapping algorithm, IEEE Trans. Signal Process. 36 (1988) 49–62. G. Cirrincione, G. Ganesan, K. Hari, S. Van Huffel, Direct and neural techniques for the data least squares problem, in: International Symposium on the Mathematical Theory of Networks and Systems (MTNS), Perpignan, France, 2000. B. De Moor, Structured total least squares and L2 approximation problems, Linear Algebra Appl. 188–189 (1993) 163–207. B. De Moor, Total least squares for affinely structured matrices and the noisy realization problem, IEEE Trans. Signal Process. 42 (11) (1994) 3104–3113. B. De Moor, Daisy: Database for the identification of systems, Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium, URL: http://www.esat.kuleuven.ac.be/sista/daisy/, 1998. G.H. Golub, C.F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal. 17 (1980) 883–893. P. Guillaume, R. Pintelon, A Gauss–Newton-like optimization algorithm for “weighted” nonlinear least-squares problems, IEEE Trans. Signal Process. 44 (9) (1996) 2222–2228. W. Ku, R.H. Storer, Ch. Georgakis, Disturbance detection and isolation by dynamic principle component analysis, Chemometr. Intell. Lab. Systems 30 (1995) 179–196. A. Kukush, I. Markovsky, S. Van Huffel, Consistency of the structured total least squares estimator in a multivariate errors-in-variables model, J. Statist. Plann. Inference, to appear. P. Lemmerling, B. De Moor, S. Van Huffel, On the equivalence of constrained total least squares and structured total least squares, IEEE Trans. Signal Process. 44 (1996) 2908–2911. P. Lemmerling, N. Mastronardi, S. Van Huffel, Fast algorithm for solving the Hankel/Toeplitz structured total least squares problem, Numer. Algorithms 23 (2000) 371–392. I. Markovsky, S. Van Huffel, A. Kukush, On the computation of the structured total least squares estimator, Numer. Linear Algebra Appl. 11 (2004) 591–608. I. Markovsky, S. Van Huffel, R. Pintelon, Block-Toeplitz/Hankel structured total least squares, SIAM J. Matrix Anal. Appl., to appear. I. Markovsky, J.C. Willems, P. Rapisarda, B. De Moor, Algorithms for deterministic balanced subspace identification, Automatica, to appear. I. Markovsky, J.C. Willems, S. Van Huffel, B. De Moor, R. Pintelon, Application of structured total least squares for system identification and model reduction, Technical Report 04-51, Department of Electrical Engineering, K.U. Leuven, 2004. D. Marquardt, An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11 (1963) 431–441. N. Mastronardi, P. Lemmerling, S. Van Huffel, Fast structured total least squares algorithm for solving the basic deconvolution problem, SIAM J. Matrix Anal. 22 (2000) 533–553. B. Roorda, C. Heij, Global total least squares modeling of multivariate time series, IEEE Trans. Automat. Control 40 (1) (1995) 50–63. J.B. Rosen, H. Park, J. Glick, Total least norm formulation and solution of structured problems, SIAM J. Matrix Anal. 17 (1996) 110–128. M. Schuermans, P. Lemmerling, S. Van Huffel, Structured weighted low rank approximation, Numer. Linear. Algebra Appl. 11 (2004) 609–618. S. Van Huffel, H. Park, J.B. Rosen, Formulation and solution of structured total least norm problems for parameter estimation, IEEE Trans. Signal Process. 44 (10) (1996) 2464–2474. S. Van Huffel, V. Sima, A. Varga, S. Hammarling, F. Delebecque, High-performance numerical software for control, IEEE Control Systems Mag. 24 (2004) 60–76. S. Van Huffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Analysis, SIAM, Philadelphia, 1991. P. Van Overschee, B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, Dordrecht, 1996. Download 0.65 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling