-
GSL - GNU Scientific Library, http://www.gnu.org/software/gsl/.
-
T. Abatzoglou, J. Mendel, G. Harada, The constrained total least squares technique and its application to harmonic superresolution, IEEE Trans. Signal Process. 39 (1991) 1070–1087.
-
M. Aoki, P.C. Yue, On a priori error estimates of some identification methods, IEEE Trans. Automatic Control 15 (5) (1970) 541–548.
-
Y. Bresler, A. Macovski, Exact maximum likelihood parameter estimation of superimposed exponential signals in noise, IEEE Trans. Acoust. Speech Signal Process. 34 (1986) 1081–1089.
-
J. Cadzow, Signal enhancement—a composite property mapping algorithm, IEEE Trans. Signal Process. 36 (1988) 49–62.
-
G. Cirrincione, G. Ganesan, K. Hari, S. Van Huffel, Direct and neural techniques for the data least squares problem, in: International Symposium on the Mathematical Theory of Networks and Systems (MTNS), Perpignan, France, 2000.
-
B. De Moor, Structured total least squares and L2 approximation problems, Linear Algebra Appl. 188–189 (1993) 163–207.
-
B. De Moor, Total least squares for affinely structured matrices and the noisy realization problem, IEEE Trans. Signal Process. 42 (11) (1994) 3104–3113.
-
B. De Moor, Daisy: Database for the identification of systems, Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium, URL: http://www.esat.kuleuven.ac.be/sista/daisy/, 1998.
-
G.H. Golub, C.F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal. 17 (1980) 883–893.
-
P. Guillaume, R. Pintelon, A Gauss–Newton-like optimization algorithm for “weighted” nonlinear least-squares problems, IEEE Trans. Signal Process. 44 (9) (1996) 2222–2228.
-
W. Ku, R.H. Storer, Ch. Georgakis, Disturbance detection and isolation by dynamic principle component analysis, Chemometr. Intell. Lab. Systems 30 (1995) 179–196.
-
A. Kukush, I. Markovsky, S. Van Huffel, Consistency of the structured total least squares estimator in a multivariate errors-in-variables model, J. Statist. Plann. Inference, to appear.
-
P. Lemmerling, B. De Moor, S. Van Huffel, On the equivalence of constrained total least squares and structured total least squares, IEEE Trans. Signal Process. 44 (1996) 2908–2911.
-
P. Lemmerling, N. Mastronardi, S. Van Huffel, Fast algorithm for solving the Hankel/Toeplitz structured total least squares problem, Numer. Algorithms 23 (2000) 371–392.
-
I. Markovsky, S. Van Huffel, A. Kukush, On the computation of the structured total least squares estimator, Numer. Linear Algebra Appl. 11 (2004) 591–608.
-
I. Markovsky, S. Van Huffel, R. Pintelon, Block-Toeplitz/Hankel structured total least squares, SIAM J. Matrix Anal. Appl., to appear.
-
I. Markovsky, J.C. Willems, P. Rapisarda, B. De Moor, Algorithms for deterministic balanced subspace identification, Automatica, to appear.
-
I. Markovsky, J.C. Willems, S. Van Huffel, B. De Moor, R. Pintelon, Application of structured total least squares for system identification and model reduction, Technical Report 04-51, Department of Electrical Engineering, K.U. Leuven, 2004.
-
D. Marquardt, An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11 (1963) 431–441.
-
N. Mastronardi, P. Lemmerling, S. Van Huffel, Fast structured total least squares algorithm for solving the basic deconvolution problem, SIAM J. Matrix Anal. 22 (2000) 533–553.
-
B. Roorda, C. Heij, Global total least squares modeling of multivariate time series, IEEE Trans. Automat. Control 40 (1) (1995) 50–63.
-
J.B. Rosen, H. Park, J. Glick, Total least norm formulation and solution of structured problems, SIAM J. Matrix Anal. 17 (1996) 110–128.
-
M. Schuermans, P. Lemmerling, S. Van Huffel, Structured weighted low rank approximation, Numer. Linear. Algebra Appl. 11 (2004) 609–618.
-
S. Van Huffel, H. Park, J.B. Rosen, Formulation and solution of structured total least norm problems for parameter estimation, IEEE Trans. Signal Process. 44 (10) (1996) 2464–2474.
-
S. Van Huffel, V. Sima, A. Varga, S. Hammarling, F. Delebecque, High-performance numerical software for control, IEEE Control Systems Mag. 24 (2004) 60–76.
-
S. Van Huffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Analysis, SIAM, Philadelphia, 1991.
-
P. Van Overschee, B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, Dordrecht, 1996.
Do'stlaringiz bilan baham: |