Development of novel plastic scintillators based on polyvinyltoluene for the hybrid j-pet/mr tomograph
Figure 29 Temperature dependence of I
Download 3.22 Mb. Pdf ko'rish
|
Figure 29 Temperature dependence of I
3 in J-PET plastic scintillator. Points denote: squares - increasing temperature; diamonds - decreasing temperature; dots and triangles - first and last points in the measurements of irradiation effect; dashed lines and arrows denote the transition temperatures; red dots with arrows denote sections of time relaxation. The ortho-positronium intensity is dependent on many factors, e.g. material purity, thermal history, the direction of temperature change, the change rate and the time of irradiation with positrons. The o-Ps lifetime (τ 3 ) increases linearly with the temperature from 123 to 260 K within the range 1.75 ns to 1.95 ns. It stays at the same level up to 283 K, which is the point from which the growth rate of τ 3 increases. The next growth rate increase starts in temperature 370 K. Both points in which τ 3 changes its growth rate are correlated with changes of o-Ps intensity too. Obtained results show that the o-Ps production intensity reveals a significant hysteresis connected mainly to matrix material. Moreover, three different rates of τ 3 growth with increasing temperature (120 - 283 K, 283 - 370 K and 370 - 423 K) may indicate existence of three phases in tested scintillator. According to the article [97] where PALS investigations of pure polystyrene are described, glass transition in the scintillator occurs in 360 K. The temperature of glass transition of the tested J-PET scintillator is slightly 61 shifted compared to pure polystyrene what may be caused by the presence of scintillating dopants. However, the range of o-Ps lifetime is similar to the results described in article [97]. Other structural changes, visible on the diagram of o-Ps intensity I 3 (bottom panel of Fig. 29), in 280 K and 260 K may be also correlated with structural changes in the doped polymer. The probable reason of the changes is crystalline - like organization of molecules in some regions of the amorphous polymer. One can find in the literature [98] information about phase transitions in polystyrene at low temperatures which is so-called beta-transition (between 283 K and 333 K). This point can be identified with the phase transition point found in our results in J-PET polystyrene - based scintillator (in 280 K). Red points in Fig. 24 denote rapid changes of I 3 dependence on time when the sample was stored in particular temperature. The measurement confirmed that o-Ps production is unstable in time (intensity I 3 decreases with time). Differences between results obtained in our experiment and the experiment described in [97] come from the presence of dopants. It is known that even small amount of impurities may significantly change temperatures of particular phase transitions. For example in polypropylene copolymers and blends described in article [99] one can observe the shift of glass transition in comparison to sample of pure polystyrene. Because of the presence of admixtures, several regions of crystalline-like organization may be formed. It results in additional structural transitions. Transition denoted as T β is probably connected with the presence of dopants. Considering the transition T γ , it is clearly visible in the I 3 diagram but almost invisible in diagram of τ 3 . This indicates that the transition is correlated with energetic changes in the molecule, not a geometrical reconfiguration. It was mentioned, that I 3 of o-Ps can be influenced by the thermal history of the sample. It is visible in the hysteresis observed for heated and cooled down scintillator. Because of that, an additional measurements of thermal stability were carried out. PAL spectra were collected for a long time, equal to at least 15 hours, in three temperatures: 123 K, 173 K and 298 K. Results of the measurements are shown in Fig. 30. |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling