Ehtimollar nazariyasining predmeti Tasodifiy hodisalar, ularning klassifikatsiyasi
Download 407 Kb.
|
hodisalar algebrasi
Ehtimollikning klassik ta’rifichekli n ta teng imkoniyatli elementar hodisalardan tashkil topgan bo‘lsin. hodisaning ehtimolligi deb, hodisaga qulaylik yaratuvchi elementar hodisalar soni k ning tajribadagi barcha elementar hodisalar soni n ga nisbatiga aytiladi. (1.6.1) Klassik ta’rifdan foydalanib, ehtimollik hisoblashda kombinatorika elementlaridan foydalaniladi. Shuning uchun kombinatorikaning ba’zi elementlari keltiramiz. Kombinatirikada qo‘shish va ko‘paytirish qoidasi deb ataluvchi ikki muhim qoida mavjud. va chekli to‘plamlar berilgan bo‘lsin. Qo‘shish qoidasi: agar to‘plam elementlari soni n va to‘plam elementlari soni m bo‘lib, ( va to‘plamlar kesishmaydigan) bo‘lsa, u holda to‘plam elementlari soni n+m bo‘ladi. Ko‘paytirish qoidasi: va to‘plamlardan tuzilgan barcha juftliklar to‘plami ning elementlari soni nm bo‘ladi. n ta elementdan m ( )tadan tanlashda ikkita sxema mavjud: qaytarilmaydigan va qaytariladigan tanlashlar. Birinchi sxemada olingan elementlar qayta olinmaydi(orqaga qaytarilmaydi), ikkinchi sxemada esa har bir olingan element har qadamda o‘rniga qaytariladi. Foydalanilgan adabiyotlar Аbdushukurov А.А. Xi-kvadrat kriteriysi: nazariyasi va tatbiqi, O‘zMU, 2006. Аbdushukurov А.А., Azlarov T.A., Djamirzayev A.A. Ehtimollar nazariyasi va matematik statistikadan misol va masalalar to‘plami. Toshkent «Universitet», 2003. Azlarov T.A., Abdushukurov A.A. Ehtimollar nazariyasi va matematik statistikadan Inglizcha-ruscha-o‘zbekcha lug‘at. Toshkent: «Universitet», 2005. Abdushukurov A.A. Ehtimollar nazariyasi. Ma’ruzalar matni. Toshkent: «Universitet», 2000. Бочаров П. П., Печинкин А. В. Теория вероятностей. Математическая статистика. - 2-е изд. - М.: ФИЗМАТЛИТ, 2005. Ватутин В.А., Ивченко Г.И., Медведев Ю.И., Чистяков В.П. Теория вероятностей и математическая статистика в задачах М.: 2003. Ивченко Г.И., Медведев Ю.И. Математическая статистика. М.: Высшая школа, 1984. Кибзун А. И., Горяинова Е. Р., Наумов А. В., Сиротин А. Н. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами / Учебн. пособие. - М.: ФИЗМАТЛИТ, 2002. Кибзун А.И., Панков А.Р., Сиротин А.Н. Учебное пособие по теории вероятностей. — М.: Изд-во МАИ, 1993. Коршунов Д.А., Чернова Н.И. Сборник задач по математической статистике: учебное пособие. 2-е изд., испр. –Новосибирск, изд-во Института математики, 2004. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. 2-е изд., перераб. и доп.- М.: ЮНИТИДАНА, 2004. http://www.lib.homelinex.org/math/; http://www.eknigu.com/lib/mathematics/; Download 407 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling