Eyler funksiyasi. Eyler va Ferma teoremalari


Download 82.5 Kb.
Sana03.12.2023
Hajmi82.5 Kb.
#1800922
Bog'liq
Eyler funksiyasi


Eyler funksiyasi. Eyler va Ferma teoremalari. Chegirmalarning keltirilgan sistemasidagi elementlar sonini aniqlash uchun Eyler funksiyasi deb ataluvchi ๐œ‘(๐‘š) funksiyadan foydalaniladi. ๐‘š โˆ’ ixtiyoriy musbat son bo`lsin, ๐‘š dan katta bo`lmagan va ๐‘š bilan o`zaro tub bo`lgan bo`lgan musbat sonlar sonini ๐œ‘(๐‘š) bilan belgilanadi. TA`RIF. Agar quyidagi ikkita shart bajarilsa, ๐œ‘(๐‘š) sonli funksiya Eyler funksiyasi deyiladi: 1. ๐œ‘(1) = 1 2. ๐œ‘(๐‘š) funksiya ๐‘š dan kichik va ๐‘š bilan o`zaro tub bolgan musbat sonlar soni.
1-TEOREMA. ๐œ‘(๐‘š) ta (๐‘š > 1) sonlarning ixtiyoriy to`plami, ya`ni ๐‘š bilan o`zaro tub va ๐‘š modul` bo`yicha ixtiyoriy ikkitasi taqqoslanmaydigan sonlar to`plami ๐‘š modul` bo`yicha chegirmalarning keltirilgan sistemasi bo`ladi. 2-TEOREMA. a butun son ๐‘š bilan o`zaro tub va ๐‘1, ๐‘2, โ€ฆ , ๐‘๐œ‘(๐‘š) โˆ’ ๐‘š modul` bo`yicha chegirmalarning keltirilgan sistemasi bo`lsin, u holda ๐‘Ž๐‘1, ๐‘Ž๐‘2, โ€ฆ , ๐‘Ž๐‘๐œ‘(๐‘š) ham ๐‘š modul bo`yicha chegirmalarning keltirilgan sistemasi bo`ladi. ISBOTI. 1-teoremaga ko`ra, ๐‘Ž๐‘1, ๐‘Ž๐‘2, โ€ฆ , ๐‘Ž๐‘๐œ‘(๐‘š) sonlar to`plamidagi ixtiyoriy ikkitasi ๐‘š modul` bo`yicha taqqoslanmasligini ko`rsatish kifoya. Haqiqatan, agar ๐‘Ž๐‘๐‘– = ๐‘Ž๐‘๐‘˜ (๐‘š๐‘œ๐‘‘๐‘š) ๐‘– โ‰  ๐‘˜ bo`lsa, (๐‘Ž, ๐‘š) = 1 bo`lgani uchun ๐‘๐‘– = ๐‘๐‘˜ (๐‘š๐‘œ๐‘‘๐‘š) bo`ladi. Bunday bo`lishi mumkin emas, chunki ๐‘๐‘– , ๐‘๐‘˜ lar ๐‘š modul` bo`yicha chegirmalarning turli sinflariga tegishli. TA`RIF. Natural sonlar to`plamida aniqlangan ๐‘“ funksiya uchun (๐‘š, ๐‘›) = 1 bo`lganda ๐‘“(๐‘š โˆ™ ๐‘›) = ๐‘“(๐‘š) โˆ™ ๐‘“(๐‘›) tenglik bajarilsa, u holda ๐‘“ funksiya multiplikativ funksiya deyiladi. TEOREMA. Eyler funksiyasi multiplikativ funksiyadir. TEOREMA. Eyler funksiyasi multiplikativ funksiyadir. ISBOTI. a va b o`zaro tub bo`lgan musbat butun sonlar bo`lsin. ๐‘Ž โˆ™ ๐‘ dan kichik bo`lgan barcha manfiymas sonlar to`plami M ni qaraylik. M dagi har bir sonni, qoldiqli bo`lish teoremasiga asosan, yagona tarzda ๐‘ โˆ™ ๐‘ž + ๐‘Ÿ (๐‘Ÿ โˆˆ {0,1, โ€ฆ , ๐‘ โˆ’ 1}, ๐‘ž โˆˆ {0,1,2, โ€ฆ , ๐‘Ž โˆ’ 1} ) koโ€™rinishda ifodalash mumkin. ๐‘๐‘ž + ๐‘Ÿ son a bilan o`zaro tub bo`lishi uchun (๐‘, ๐‘Ÿ) = 1 bo`lishi zarur va yetarli. Bunday ๐‘Ÿ sonlar soni ๐œ‘(๐‘) ta bo`ladi. ๐‘Ÿ1 โˆ’shunday sonlarning biri bo`lsin. U holda ๐‘Ÿ1, ๐‘ + ๐‘Ÿ1, 2๐‘ + ๐‘Ÿ1, โ€ฆ , ๐‘(๐‘Ž โˆ’ 1) + ๐‘Ÿ1 sonlar ketma-ketligi a modul bo`yicha chegirmalarning to`la sistemasini tashkil etadi. Shuning uchun, bu sonlar orasida a bilan o`zaro tub bo`lgan sonlar ๐œ‘(๐‘Ž) ta bo`ladi. Shunday qilib, har bir ๐‘Ÿ1 songa (๐‘ bilan o`zaro tub bo`lgan) ๐‘๐‘ž + ๐‘Ÿ1 ko`rinishdagi a bilan o`zaro tub sonlar va demak, ab bilan ham o`zaro tub bo`lgan ๐œ‘(๐‘Ž) ta son mos keladi. Shuning uchun, ab bilan o`zaro tub bo`lgan sonlar soni ๐œ‘(๐‘Ž) โˆ™ ๐œ‘(๐‘), ya`ni ๐œ‘(๐‘Ž๐‘) = ๐œ‘(๐‘Ž) โˆ™ ๐œ‘(๐‘) bo`ladi. TEOREMA. Agar ๐‘š = ๐‘1 ๐›ผ1 โˆ™ ๐‘2 ๐›ผ2 โˆ™ โ€ฆ โˆ™ ๐‘๐‘› ๐›ผ๐‘› bo`lsa, u holda ๐œ‘(๐‘š) = ๐‘š (1 โˆ’ 1 ๐‘1 ) (1 โˆ’ 1 ๐‘2 ) โˆ™ โ€ฆ โˆ™ (1 โˆ’ 1 ๐‘๐‘› ) bo`ladi. ISBOTI. ๐œ‘(๐‘š) funksiya mul`tiplikativ bo`lgani uchun, bu funksiyani ๐œ‘(๐‘๐‘˜ ๐›ผ๐‘˜ ) uchun hisoblashni bilish kifoya. ๐‘ ๐›ผ dan kichik manfiy bo`lmagan va ๐‘ ๐›ผ bilan o`zaro tub bo`lmagan sonlar sonlar soni ๐‘ ๐›ผโˆ’1 ga teng, chunki faqat ๐‘˜๐‘, 0 โ‰ค ๐‘˜ < ๐‘ ๐›ผโˆ’1 sonlargina ๐‘ ๐›ผ bilan o`zaro tub bo`lmaydi. Shuning uchun ๐‘ ๐›ผ dan kichik va ๐‘ ๐›ผ bilan o`zaro tub sonlar soni ๐‘ ๐›ผ โˆ’ ๐‘ ๐›ผโˆ’1 ta bo`ladi. ๐œ‘(๐‘ ๐›ผ) = ๐‘ ๐‘Ž (1 โˆ’ 1 ๐‘ ) ๐‘š = ๐‘1 ๐›ผ1 โˆ™ ๐‘2 ๐›ผ2 โˆ™ โ€ฆ โˆ™ ๐‘๐‘› ๐›ผ๐‘› va ๐œ‘ multiplikativ bo`lgani uchun ๐œ‘(๐‘š) = ๐œ‘(๐‘1 ๐›ผ1 ) โˆ™ ๐œ‘(๐‘2 ๐›ผ2 ) โˆ™ โ€ฆ โˆ™ ๐œ‘(๐‘๐‘› ๐›ผ๐‘› ) = ๐‘1 ๐›ผ1 (1 โˆ’ 1 ๐‘1 ) โˆ™ ๐‘2 ๐›ผ2 (1 โˆ’ 1 ๐‘2 ) โ€ฆ ๐‘๐‘› ๐›ผ๐‘› (1 โˆ’ 1 ๐‘๐‘› ) = ๐‘1 ๐›ผ1 โˆ™ ๐‘2 ๐›ผ2 โˆ™ โ€ฆ โˆ™ ๐‘๐‘› ๐›ผ๐‘› (1 โˆ’ 1 ๐‘1 ) (1 โˆ’ 1 ๐‘2 ) โˆ™ โ€ฆ โˆ™ (1 โˆ’ 1 ๐‘๐‘› ) = ๐‘š (1 โˆ’ 1 ๐‘1 ) (1 โˆ’ 1 ๐‘2 ) โˆ™ โ€ฆ โˆ™ (1 โˆ’ 1 ๐‘๐‘› ) EYLER TEOREMASI. Agar a butun son ๐‘š bilan o`zaro tub bo`lsa, u holda ๐‘Ž ๐œ‘(๐‘š) = 1(๐‘š๐‘œ๐‘‘๐‘š) (1) bo`ladi. ISBOTI. ๐‘Ž1, ๐‘Ž2, โ€ฆ , ๐‘Ž๐œ‘(๐‘š) (2) - m modul bo`yicha chegirmalarning keltirilgan sistemasi bo`lsin, u holda 2-teoremaga ko`ra, ๐‘Ž๐‘Ž1, ๐‘Ž๐‘Ž2, โ€ฆ , ๐‘Ž๐‘Ž๐œ‘(๐‘š) (3) ham m modul` bo`yicha chegirmalarning keltirilgan sistemasi bo`ladi. Shuning uchun (3) sonlar ko`paytmasi (2) sonlar ko`paytmasi bilan m modul` bo`yicha taqqoslanadi, ya`ni ๐‘Ž ๐œ‘(๐‘š)๐‘Ž1 โˆ™ ๐‘Ž2 โˆ™ โ€ฆ โˆ™ ๐‘Ž๐œ‘(๐‘š) โ‰ก ๐‘Ž1 โˆ™ ๐‘Ž2 โˆ™ โ€ฆ โˆ™ ๐‘Ž๐œ‘(๐‘š)(๐‘š๐‘œ๐‘‘๐‘š) ๐‘Ž1๐‘Ž2 โˆ™ โ€ฆ โˆ™ ๐‘Ž๐œ‘(๐‘š) ko`paytma ๐‘š bilan o`zaro tub, shuning uchun taqqoslamaning xossasiga ko`ra, ๐‘Ž1๐‘Ž2 โ€ฆ ๐‘Ž๐œ‘(๐‘š) ga bo`linishi mumkin, demak, ๐‘Ž ๐œ‘(๐‘š) โ‰ก 1(๐‘š๐‘œ๐‘‘๐‘š) bo`ladi. FERMA TEOREMASI. Agar a son p tub songa bo`linmasa, u holda ๐‘Ž ๐‘โˆ’1 โ‰ก 1(๐‘š๐‘œ๐‘‘๐‘) taqqoslama o`rinli bo`ladi. ISBOTI. a son p tub songa bo`linmasa, u holda (๐‘Ž, ๐‘) = 1 bo`ladi. Bundan, Eyler teoremasiga ko`ra, ๐‘š = ๐‘ va ๐œ‘(๐‘) = ๐‘ โˆ’ 1 ekanligidan ๐‘Ž ๐œ‘(๐‘) โ‰ก 1(๐‘š๐‘œ๐‘‘๐‘) ๐‘Ž ๐‘โˆ’1 โ‰ก 1(๐‘š๐‘œ๐‘‘๐‘) bo`ladi, yoki (๐‘Ž, ๐‘) = 1 bo`lgani uchun ๐‘Ž ๐‘ โ‰ก ๐‘Ž(๐‘š๐‘œ๐‘‘๐‘). Misol 1. Eyler funksiyasini hisoblang: ๐œ‘(18 โˆ™ 42) Yechish: 18 bilan oโ€™zaro tub boโ€™lgan musbat sonlar: 1, 5, 7, 11, 13, 17. Demak, 18 bilan oโ€™zaro tub boโ€™lgan musbat sonlar soni 6 ta; 42 bilan oโ€™zaro tub boโ€™lgan musbat sonlar: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41. Demak, 42 bilan oโ€™zaro tub boโ€™lgan musbat sonlar soni 12 ta ๐œ‘(๐‘Ž โˆ™ ๐‘) = ๐œ‘(๐‘Ž) โˆ™ ๐œ‘(๐‘) ga asosan ๐œ‘(18 โˆ™ 42) = ๐œ‘(18) โˆ™ ๐œ‘(42) = 6 โˆ™ 12 = 72, yaโ€™ni ๐œ‘(18 โˆ™ 42) = 72 yechim hosil boโ€™ladi. Misol 2. 7๐‘ฅ โ‰ก 10(๐‘š๐‘œ๐‘‘ 4) taqqoslamani Eyler teoremasi yordamida yeching. Yechish: ๐‘Ž๐‘ฅ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘ ๐‘š) taqqoslama (a,m)=1 boโ€™lsa, u hola uning yechimi ๐‘ฅ โ‰ก ๐‘ โˆ™ ๐‘Ž ๐œ‘(๐‘š)โˆ’1 (๐‘š๐‘œ๐‘‘ ๐‘š) formula yordamida topiladi. Haqiqatan ham Eyler teoremasiga koโ€™ra ๐‘Ž ๐œ‘(๐‘š)โˆ’1 โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘š). Bundan ๐‘Ž ๐œ‘(๐‘š)๐‘ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘ ๐‘š) va ๐‘Ž โˆ™ ๐‘Ž ๐œ‘(๐‘š)โˆ’1๐‘ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘ ๐‘š) larni hosil qilsak, ๐‘ฅ โ‰ก ๐‘๐‘Ž ๐œ‘(๐‘š)โˆ’1 (๐‘š๐‘œ๐‘‘ ๐‘š) kelib chiqadi. 7๐‘ฅ โ‰ก 10(๐‘š๐‘œ๐‘‘ 4) dan a=7, b=10, m=4 yechim ๐‘ฅ โ‰ก 10 โˆ™ 7 ๐œ‘(4)โˆ’1 (๐‘š๐‘œ๐‘‘ 4) ni topish uchun ๐œ‘(4) ni aniqlaymiz. 4 = 2 2 ekanligidan ๐œ‘(4) = 4 โˆ™ (1 โˆ’ 1 2 ) = 2 kelib chiqadi. Demak, ๐‘ฅ โ‰ก 10 โˆ™ 7 2โˆ’1 (๐‘š๐‘œ๐‘‘ 4). Agar 10 โ‰ก 2 (๐‘š๐‘œ๐‘‘ 4), 7 โ‰ก 3 (๐‘š๐‘œ๐‘‘ 4), 6 โ‰ก 2 (๐‘š๐‘œ๐‘‘ 4) taqqoslamalaran foydalansak ๐‘ฅ โ‰ก 10 โˆ™ 7 2โˆ’1 (๐‘š๐‘œ๐‘‘ 4) = 2 โˆ™ 3 = 6 โ‰ก 2 (๐‘š๐‘œ๐‘‘ 4), yaโ€™ni ๐‘ฅ โ‰ก 2 (๐‘š๐‘œ๐‘‘ 4) yechimni hosil qilamiz. Birinchi darjali taqqoslamalar va ularni yechish usullari. 1-TA`RIF. Ushbu ๐‘Ž๐‘ฅ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) (1) ko`rinishdagi taqqoslama bir noma`lumli birinchi darajali taqqoslama deyiladi. (bu erda a va b-butun sonlar, m-natural son) 2-TA`RIF. Agar (1) taqqoslamada ๐‘ฅ = ๐‘ฅ0 bo`lganda ๐‘Ž๐‘ฅ0 โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) taqqoslama to`g`ri bo`lsa, u holda ๐‘ฅ0 son taqqoslamani qanoatlantiradi deyiladi. 3-TA`RIF. ๐‘š modul` bo`yicha taqqoslamaning yechimlar soni deb, bu taqqoslamaning m modul` bo`yicha chegirmalarning to`liq sistemadagi yechimlar soniga aytiladi. Agar a son (1) taqqoslamani qanoatlantirsa u holda m modul` bo`yicha a bilan taqqoslanuvchi โˆ€ ๐‘ son ham bu taqqoslamani qanoatlantiradi, bunday 2 ta yechim bitta deb qaraladi. Misol. 5๐‘ฅ โ‰ก 3(๐‘š๐‘œ๐‘‘6), 0, 1, 2, 3, 4, 5 ๐‘ฅ = 3(๐‘š๐‘œ๐‘‘6) ๐‘ฅ0 = 3 + 6๐‘ก, โˆ€๐‘ก โˆˆ โ„ค ๐‘ฅ0 = 9, 15, โ€ฆ sonlar ham bu taqqoslamani qanoatlantiradi. TEOREMA. Agar (๐‘Ž, ๐‘š) = 1 bo`lsa, u holda (1) taqqoslama yagona yechimga ega bo`ladi. ISBOTI. m modul` bo`yicha chegirmalarning to`la sistemasi ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘š bo`lsin, u holda ๐‘Ž๐‘ฅ1, ๐‘Ž๐‘ฅ2, โ€ฆ , ๐‘Ž๐‘ฅ๐‘š (2) ham chegirmalarning to`la sistemasi bo`lishi ma`lum. Agar (1) da ๐‘ฅ o`rniga ketma ket (2) dagi chegirmalarni qo`yib ko`rsak, u holda bu taqqoslamaning chap qismi chegirmalarning to`la sistemasidagi barcha qiymatlardan o`tadi. Bu esa bitta va faqat bitta ๐‘ฅ๐‘– son uchun ๐‘Ž๐‘ฅ๐‘– sonning b songa tegishli bo`lgan chegirma sinfiga tegishli bo`lishini bildiradi, bunda ๐‘Ž๐‘ฅ๐‘– โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) bo`ladi. Demak, agar (๐‘Ž, ๐‘š) = 1 bo`lsa, (1) taqqoslama yagona bo`lgan ๐‘ฅ = ๐‘ฅ๐‘–(๐‘š๐‘œ๐‘‘๐‘š) yoki ๐‘ฅ = ๐‘ฅ๐‘– + ๐‘š๐‘ก, ๐‘ก โˆˆ โ„ค yechimga ega bo`ladi. TEOREMA. Agar (๐‘Ž, ๐‘š) = ๐‘‘ > 1 va ๐‘ son ๐‘‘ ga boโ€™linmasa, u holda ๐‘Ž๐‘ฅ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) taqqoslama yechimga ega bo`lmaydi. ISBOTI. Faraz qilaylik, ๐‘Ž๐‘ฅ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) taqqoslama uchun ๐‘š modul` bo`yicha ๐‘ฅ1 sinf yechim bo`lsin va ๐‘ฅ1 โˆˆ ๐‘ฅฬ…ฬ…1ฬ… bo`lsin, u holda ๐‘Ž๐‘ฅ1 โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) yoki ๐‘Ž๐‘ฅ1 โˆ’ ๐‘ = ๐‘š๐‘ก, ๐‘ก โˆˆ โ„ค bo`ladi. ๐‘Ž โ‹ฎ ๐‘‘ โˆง ๐‘š โ‹ฎ ๐‘‘ dan ๐‘ โ‹ฎ ๐‘‘ kelib chiqadi. Bunday bo`lishi mumkin emas, shartga ko`ra ๐‘ son ๐‘‘ ga boโ€™linmaydi. Demak, teorema isbotlandi. TEOREMA. Agar (๐‘Ž, ๐‘š) = ๐‘‘ > 1 va ๐‘ son ๐‘‘ ga boโ€™linsa, u holda ๐‘Ž๐‘ฅ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) taqqoslama ๐‘‘ ta turli yechimlarga ega bo`ladi. Bu yechim ๐‘š ๐‘‘ modul` bo`yicha bitta sinfni tashkil qiladi. ISBOTI. Shartga ko`ra ๐‘Ž, ๐‘ va ๐‘š sonlar ๐‘‘ ga bo`linadi. ๐‘Ž = ๐‘Ž1๐‘‘, ๐‘ = ๐‘1๐‘‘ โˆง ๐‘š = ๐‘š1๐‘‘ (1) ni ๐‘‘ ga bo`lib, unga teng kuchli bo`lgan ๐‘Ž๐‘ฅ1 โ‰ก ๐‘1(๐‘š๐‘œ๐‘‘๐‘š1) (4) taqqoslamaga ega bo`lamiz. Haqiqatan ๐‘ฅ = ๐›ผ son (4) ni qanoatlantirsa, u holda ๐‘Ž๐›ผ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) taqqoslamaga ega bo`lamiz, uning ikkala qismini va modulni ๐‘‘ ga bo`lib, ๐‘Ž1๐›ผ = ๐‘1(๐‘š๐‘œ๐‘‘๐‘š1) hosil bo`ladi. Demak, ๐›ผ (4) ni qanoatlantiradi. Aksincha, ๐‘ฅ = ๐›ฝ butun son ๐‘Ž1๐›ฝ โ‰ก ๐‘1(๐‘š๐‘œ๐‘‘๐‘š1) taqqoslamani qanoatlantirsin. Bu taqqoslamaning ikkala qismini va modulni ๐‘‘ ga ko`paytirib, ๐‘Ž๐›ฝ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) taqqoslamani hosil qilamiz. Demak, ๐›ฝ (1) ni qanoatlantiradi. Shunday qilib (1) va (4) teng kuchli ekan. (4) dagi (๐‘Ž, ๐‘š1 ) = 1, shuning uchun bu taqqoslama ๐‘ฅ = ๐‘ฅ0 (๐‘š๐‘œ๐‘‘๐‘š) โˆจ ๐‘ฅ = ๐‘ฅ0 + ๐‘š๐‘ก, (๐‘ก โˆˆ ๐‘ก) yagona echimga ega, bu erda ๐‘ฅ0 ๐‘š modul` bo`yicha manfiymas eng kichik chegirma bo`lsin yoki โ€ฆ ๐‘ฅ0 โˆ’ 2๐‘š1, ๐‘ฅ0 โˆ’ ๐‘š1, ๐‘ฅ0, ๐‘ฅ0 + ๐‘š, ๐‘ฅ0 + 2๐‘š1, โ€ฆ , ๐‘ฅ0 + (๐‘‘ โˆ’ 1)๐‘š1, ๐‘ฅ0 + ๐‘‘๐‘š1 , ๐‘ฅ0 + (๐‘‘ + 1)๐‘š1, โ€ฆ (5) (5) dagi har bir chegirma (4) ni qanoatlantiradi va demak, (1) ni ham qanoatlantiradi. ๐‘š1 = ๐‘š ๐‘‘ modul` bo`yicha (5) dagi hamma sonlar bitta sinfga tegishli, lekin ๐‘š = ๐‘š1๐‘‘ modul` bo`yicha ular turli sinflarga tegishli bo`ladi, bu sinflarning chegirmalari esa (6) ๐‘ฅ0, ๐‘ฅ0 + ๐‘š1, ๐‘ฅ0 + 2๐‘š1, โ€ฆ , ๐‘ฅ0 + (๐‘‘ โˆ’ 2)๐‘š1, ๐‘ฅ0 + (๐‘‘ โˆ’ 1)๐‘š1 Demak, (1) m modul` bo`yicha ๐‘‘ ta turli echimga ega bo`ladi: ๐‘ฅ โ‰ก ๐‘ฅ0 (๐‘š๐‘œ๐‘‘๐‘š), ๐‘ฅ โ‰ก ๐‘ฅ0 + ๐‘š1(๐‘š๐‘œ๐‘‘๐‘š) ๐‘ฅ โ‰ก ๐‘ฅ0 + 2๐‘š1 (๐‘š๐‘œ๐‘‘๐‘š), โ€ฆ , ๐‘ฅ โ‰ก ๐‘ฅ0 + (๐‘‘ โˆ’ 1)๐‘š1(๐‘š๐‘œ๐‘‘๐‘š) bu erda ๐‘ฅ0 โˆ’(3) taqqoslamaning yechimi bo`lgan sinfning eng kichik manfiymas chegirmasi. Misol. 3๐‘ฅ โ‰ก 6(๐‘š๐‘œ๐‘‘9) (3,6) = 3 โˆง 6 โ‹ฎ 3 =2 3 ta yechimga ega. ๐‘ฅ = 2(๐‘š๐‘œ๐‘‘3) Demak, berilgan taqqoslamaning barcha yechimlari ๐‘ฅ = 2(๐‘š๐‘œ๐‘‘9), ๐‘ฅ = 2 + 3(๐‘š๐‘œ๐‘‘9) โ‰ก 5(๐‘š๐‘œ๐‘‘9) ๐‘ฅ โ‰ก 2 + 3 โˆ™ 2(๐‘š๐‘œ๐‘‘๐‘š) โ‰ก 8(๐‘š๐‘œ๐‘‘9) bo`ladi. TEOREMA. Agar (๐‘Ž, ๐‘š) = 1 bo`lsa, u holda ๐‘Ž๐‘ฅ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) taqqoslamaning yechimi ๐‘ฅ โ‰ก ๐‘๐‘Ž ๐œ‘(๐‘š)โˆ’1 (๐‘š๐‘œ๐‘‘๐‘š) bo`ladi. ISBOTI. (๐‘Ž, ๐‘š) = 1 bo`lgani uchun Eyler teoremasiga ko`ra ๐‘Ž ๐œ‘(๐‘š) โ‰ก 1(๐‘š๐‘œ๐‘‘๐‘š). Bundan ๐‘Ž ๐œ‘(๐‘š) โˆ™ ๐‘ = ๐‘(๐‘š๐‘œ๐‘‘๐‘š) ๐‘Ž โˆ™ ๐‘Ž ๐œ‘(๐‘š)โˆ’1 โˆ™ ๐‘ = ๐‘(๐‘š๐‘œ๐‘‘๐‘š) (3) Demak, (1) โˆง (3) ni solishtirsak, ๐‘ฅ = ๐‘Ž ๐œ‘(๐‘š)โˆ’1 โˆ™ ๐‘(๐‘š๐‘œ๐‘‘๐‘š) yechimi ekani ko`rinadi. Misol. 5๐‘ฅ โ‰ก 3(๐‘š๐‘œ๐‘‘6) (5,6) = 1 bo`lgani uchun ๐‘ฅ = 3 โˆ™ 5 ๐œ‘(6)โˆ’1 (๐‘š๐‘œ๐‘‘๐‘š) โ‰ก 3 โˆ™ 5(๐‘š๐‘œ๐‘‘๐‘š) โ‰ก 15 โ‰ก 3(๐‘š๐‘œ๐‘‘๐‘š). Sinash usuli. Bu usulning mohiyati shundaki (1) taqqoslamadagi ๐‘ฅ o`rniga ๐‘š modulga ko`ra chegirmalarning to`la sistemasidagi barcha chegirmalar ketma-ket qo`yib chiqiladi. Ulardan qaysi biri (1) ni to`g`ri taqqoslamaga aylantirsa, o`cha chegirma qatnashgan sinf yechim hisoblanadi. Lekin koeffitsient yetarlicha katta bo`lganda bu usul qulay emas. Koeffitsientlarni o`zgartirish usuli. Taqqoslamalarning xossalaridan foydalanib, (1) da noโ€™ma`lum oldidagi koeffitsientni va b ni shunday o`zgartirish kerakki, natijada taqqoslamaning o`ng tomonida hosil bo`lgan son ๐‘Ž๐‘ฅ hadning koeffitsientiga bo`linsin. MISOL. 1. 7๐‘ฅ โ‰ก 5(๐‘š๐‘œ๐‘‘9) 7๐‘ฅ โ‰ก 5 + 9(๐‘š๐‘œ๐‘‘9) 7๐‘ฅ โ‰ก 14(๐‘š๐‘œ๐‘‘9) ๐‘ฅ โ‰ก 2(๐‘š๐‘œ๐‘‘9) 2. 17๐‘ฅ โ‰ก 25(๐‘š๐‘œ๐‘‘28) 17๐‘ฅ + 28๐‘ฅ โ‰ก 25(๐‘š๐‘œ๐‘‘28) 45๐‘ฅ โ‰ก 25(๐‘š๐‘œ๐‘‘28) 9๐‘ฅ โ‰ก 5(๐‘š๐‘œ๐‘‘28) 9๐‘ฅ โ‰ก 5 โˆ’ 140(๐‘š๐‘œ๐‘‘28) 9๐‘ฅ โ‰ก โˆ’135(๐‘š๐‘œ๐‘‘28) ๐‘ฅ โ‰ก โˆ’15(๐‘š๐‘œ๐‘‘28) ๐‘ฅ โ‰ก 13(๐‘š๐‘œ๐‘‘28) Eyler teoremasidan foydalanish usuli. Ma`lumki, (๐‘Ž, ๐‘š) = 1 bo`lsa, u holda ๐‘Ž ๐œ‘(๐‘š) โ‰ก 1 (๐‘š๐‘œ๐‘‘๐‘š) taqqoslama o`rinli edi. Shunga ko`ra, ๐‘ฅ = ๐‘Ž ๐œ‘(๐‘š)โˆ’1 โˆ™ ๐‘(๐‘š๐‘œ๐‘‘๐‘š) bo`ladi. Misol. 3๐‘ฅ โ‰ก 7(๐‘š๐‘œ๐‘‘11) ๐‘ฅ โ‰ก 3 ๐œ‘(11)โˆ’1 โˆ™ 7(๐‘š๐‘œ๐‘‘11) ๐œ‘(11) = 10 ๐‘ฅ โ‰ก 3 9 โˆ™ 7(๐‘š๐‘œ๐‘‘11) โ‰ก (3 3 ) 3 โˆ™ 7 โ‰ก 5 3 โˆ™ 7 โ‰ก 4 โˆ™ 7 โ‰ก 28 โ‰ก 6(๐‘š๐‘œ๐‘‘11) Taqqoslamaning moduli yetarlicha katta bo`lsa, quidagi usul ancha qulaydir. Uzluksiz kasrlardan foydalanish usuli. ๐‘Ž๐‘ฅ โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) taqqoslama berilgan bo`lib, (๐‘Ž, ๐‘š) = 1 โˆง ๐‘Ž > 0 bo`lsin. ๐‘š ๐‘Ž kasrni uzluksiz kasrlarga yoyib, uning munosib kasrlarini ๐‘ƒ๐‘˜ ๐‘„๐‘˜ (๐‘˜ = 1ฬ…ฬ…ฬ…,ฬ…๐‘›ฬ…) kabi belgilaymiz, bunda ๐‘ƒ๐‘› = ๐‘š โˆง ๐‘„๐‘› = ๐‘Ž bo`ladi, u holda ๐‘ƒ๐‘›๐‘„๐‘›โˆ’1 โˆ’ ๐‘ƒ๐‘›โˆ’1๐‘„๐‘› = (โˆ’1) ๐‘› tenglikni ๐‘š๐‘„๐‘›โˆ’1 โˆ’ ๐‘Ž๐‘ƒ๐‘›โˆ’1 = (โˆ’1) ๐‘› ko`rinishda yozish mumkin, yoki ๐‘Ž๐‘ƒ๐‘›โˆ’1 โ‰ก (โˆ’1) ๐‘› + ๐‘š๐‘„๐‘›โˆ’1 dan ๐‘Ž๐‘ƒ๐‘›โˆ’1 โ‰ก (โˆ’1) ๐‘›โˆ’1 (๐‘š๐‘œ๐‘‘๐‘š) (2) (2) ni (โˆ’1) ๐‘›โˆ’1 โˆ™ ๐‘ ga ko`paytirib, (โˆ’1) ๐‘›โˆ’1 โˆ™ ๐‘ โˆ™ ๐‘Ž๐‘ƒ๐‘›โˆ’1 โ‰ก ๐‘(๐‘š๐‘œ๐‘‘๐‘š) (3) (1) va (3) ni solishtirib ๐‘ฅ โ‰ก (โˆ’1) ๐‘›โˆ’1๐‘ โˆ™ ๐‘ƒ๐‘›โˆ’1(๐‘š๐‘œ๐‘‘๐‘š) ni hosil qilamiz. Bu erda ๐‘ƒ๐‘›โˆ’1 son ๐‘š ๐‘Ž kasrning (๐‘› โˆ’ 1) โˆ’ munosib kasrning suratidan iborat. (1) taqqoslama yagona yechimga ega bo`lgani uchun (3) yechim (1) ning yagona yechimi bo`ladi. MISOL. 68๐‘ฅ โ‰ก 164(๐‘š๐‘œ๐‘‘212) (68,164) = 4, 212/4 17๐‘ฅ โ‰ก 41(๐‘š๐‘œ๐‘‘53), (17,53) = 1 ๐‘ƒ๐‘˜โˆ’1 = 25 ๐‘› = 3, ๐‘› โˆ’ 1 = 2 ๐‘ฅ0 โ‰ก (โˆ’1) 2 โˆ™ 25 โˆ™ 41(๐‘š๐‘œ๐‘‘53) โ‰ก 18(๐‘š๐‘œ๐‘‘53) ๐‘ฅ โ‰ก 18, 71, 124, 177(๐‘š๐‘œ๐‘‘212) Ljandr simvoli va uning xossalari. Ushbu ๐‘ฅ 2 โ‰ก ๐‘Ž (๐‘š๐‘œ๐‘‘ ๐‘) , (๐‘Ž; ๐‘) = โˆ’1 taqqoslamaning moduli yetarlicha katta boโ€™lganda Eyler kriteriysidan foydalaninsh unchalik qulay emas. Bunda hollarda Lejandr simvoli deb ataluvchi va ( ๐‘Ž ๐‘ ) kabi atluvchi simvoldan foydalaniladi. Taโ€™rif. Quyidagi shatrlarniqanoatlantiruvchi ( ๐‘Ž ๐‘ ) simvol Lejandr simvoli deyiladi: ( ๐‘Ž ๐‘ ) = { 1, ๐‘Ž๐‘”๐‘Ž๐‘Ÿ ๐‘Ž ๐‘ ๐‘œ๐‘› ๐‘ ๐‘ก๐‘œ๐‘ž ๐‘ก๐‘ข๐‘ ๐‘š๐‘œ๐‘‘๐‘ข๐‘™ ๐‘๐‘œ โ€ฒ๐‘ฆ๐‘–๐‘โ„Ž๐‘Ž๐‘˜๐‘ฃ๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘˜ ๐‘โ„Ž๐‘’๐‘”๐‘–๐‘Ÿ๐‘š๐‘Ž ๐‘๐‘œ โ€ฒ ๐‘™๐‘ ๐‘Ž; โˆ’1, ๐‘Ž๐‘”๐‘Ž๐‘Ÿ ๐‘Ž ๐‘ ๐‘œ๐‘› ๐‘ ๐‘ก๐‘œ๐‘ž ๐‘ก๐‘ข๐‘ ๐‘š๐‘œ๐‘‘๐‘ข๐‘™ ๐‘๐‘œ โ€ฒ๐‘ฆ๐‘–๐‘โ„Ž๐‘Ž๐‘˜๐‘ฃ๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘˜ ๐‘โ„Ž๐‘’๐‘”๐‘–๐‘Ÿ๐‘š๐‘Ž๐‘š๐‘Ž๐‘  ๐‘๐‘œ โ€ฒ ๐‘™๐‘ ๐‘Ž. ( ๐‘Ž ๐‘ ) simvol a sondan p boโ€™yicha tuzlgan Lejandr simvoli deb taladi, bu yerda a Lejandr simbolining surati, p esa Lejandr simvolining maxraji deyiladi. Misol. ( 7 19) = ๐Ÿ, chunki Eyler kriteriysiga asosan, 7 19โˆ’1 2 โ‰ก 1 (๐‘š๐‘œ๐‘‘ 19) boโ€™lgani uchun 7 son 19 modul boโ€™yicha vadratik chegirmadir. 5 son 17 modul boโ€™yicha kvadratik chegirmamas boโ€™lganligidan ( 5 17) = โˆ’1 boโ€™ladi. Maโ€™lumki, ๐‘Ž ๐‘โˆ’1 2 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) , ๐‘Ž ๐‘โˆ’1 2 โ‰ก โˆ’1 (๐‘š๐‘œ๐‘‘ ๐‘) ekanligiga qarab, a kvadratik chegirma yoki kvadratik chegirmamas boโ€™ladi. Demak, Ljandr simvoli va Eyler kriteriylariga asosan, quyidagini yoza olamiz: ( ๐‘Ž ๐‘ ) โ‰ก ๐‘Ž ๐‘โˆ’1 2 (๐‘š๐‘œ๐‘‘ ๐‘). (1) Endi Lejandr simvolining quyidagi baโ€™zi bir xossalarini oโ€™rib chiqamiz: 1-xossa. ๐‘Ž โ‰ก ๐‘Ž1 (๐‘š๐‘œ๐‘‘ ๐‘) => ( ๐‘Ž ๐‘ ) = ( ๐‘Ž1 ๐‘ ) . (2) Haqiqatan, bitta sinfning elementlari berilgan modul boโ€™yicha yo kvadratik chegirma, yoki kvadratik chegirmamas boโ€™ladi. Bunga asosan, (1) ning toโ€™gโ€™rilii kelib chiqadi. Bu xossadan foydalanib, har qanday ๐‘˜ โˆˆ ๐‘ uhun quyidagini yoza olamiz: ( ๐‘Ž ๐‘ ) = ( ๐‘˜๐‘+๐‘Ž1 ๐‘ ), ( ๐‘˜๐‘+๐‘Ž1 ๐‘ ) = ( ๐‘Ž1 ๐‘ ) boโ€™lgani uchun ( ๐‘Ž ๐‘ ) = ( ๐‘Ž1 ๐‘ ) boโ€™ladi. 2-xossa. ( 1 ๐‘ ) = 1 . Haqiqatan, ๐‘ฅ 2 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) taqqoslama doimo yechimga ega boโ€™lib, ๐‘ฅ โ‰ก ยฑ1 (๐‘š๐‘œ๐‘‘ ๐‘) uning yehimidir. 3-xossa. ( โˆ’1 ๐‘ ) = (โˆ’1) ๐‘โˆ’1 2 . (1) taqqoslamaga asosan quyidagini yoza olamiz: ( โˆ’1 ๐‘ ) = (โˆ’1) ๐‘โˆ’1 2 (๐‘š๐‘œ๐‘‘ ๐‘) (3). Lekin ( โˆ’1 ๐‘ ) va (โˆ’1) ๐‘โˆ’1 2 larning qiymati ยฑ1 dan farqli emas. Shu bilan bir vaqtda p toq tub son boโ€™lgani uchun 1 va -1 lar shu modul boโ€™yicha taqqoslanuvchi boโ€™la olmaydi. Demak, ( โˆ’1 ๐‘ ) va (โˆ’1) ๐‘โˆ’1 2 lar bir vaqtda 1 ga yoki -1 ga teng boโ€™ladi. 4-xossa. ( ๐‘Žโˆ™๐‘ ๐‘ ) โ‰ก ( ๐‘Ž ๐‘ ) โˆ™ ( ๐‘ ๐‘ ) . Isboti. (1) taqqoslaamaga asosan quyidagini yozish mumkin: ( ๐‘Žโˆ™๐‘ ๐‘ ) โ‰ก (๐‘Ž โˆ™ ๐‘) ๐‘โˆ’1 2 โ‰ก (๐‘Ž) ๐‘โˆ’1 2 โˆ™ (๐‘) ๐‘โˆ’1 2 โ‰ก ( ๐‘Ž ๐‘ ) โˆ™ ( ๐‘ ๐‘ ) (๐‘š๐‘œ๐‘‘ ๐‘) yoki ( ๐‘Žโˆ™๐‘ ๐‘ ) โ‰ก ( ๐‘Ž ๐‘ ) โˆ™ ( ๐‘ ๐‘ ) (๐‘š๐‘œ๐‘‘ ๐‘) . (๐‘Ž) ๐‘โˆ’1 2 โˆ™ (๐‘) ๐‘โˆ’1 2 โ‰ก ( ๐‘Ž ๐‘ ) โˆ™ ( ๐‘ ๐‘ ) (๐‘š๐‘œ๐‘‘ ๐‘) taqqoslamaning ikkala qismi a va b lar p modul boโ€™yicha kvadratik chegirma yoki kvadratik chegirmamas boโ€™lsa, 1 ga, a va b larning biri p modul boโ€™yicha kvadratik chegirma, ikkinchisi esa kvadratik chegirmamas boโ€™lsa, -1 ga teng. Shuning uchun ( ๐‘Žโˆ™๐‘ ๐‘ ) โ‰ก ( ๐‘Ž ๐‘ ) โˆ™ ( ๐‘ ๐‘ ) tenglikni yosa olamiz. Bu xossadan quyidagi natijalar kelib chiqadi: 1-natija. ( ๐‘Ž 2 ๐‘ ) โ‰ก 1, ( ๐‘Žโˆ™๐‘ 2 ๐‘ ) โ‰ก ( ๐‘Ž ๐‘ ) . 2-natija. Juft sondagi kvadratik chegirmalar yoki kvadratik chegirmamaslar koโ€™paytmasi doimo kvadratik chegirma boโ€™ladi. Toq sondagi kvadratik chegirmamaslar koโ€™paytmasi yana kvadratik chegirmamas boโ€™ladi. 5-xossa. ( 2 ๐‘ ) โ‰ก (โˆ’1) ๐‘ 2โˆ’1 8 . Biz bu xossani isbot qilib oโ€™tirmasdan undan amaliy mashgโ€™ulotlarda foydalnishning aโ€™zi bir tomonlarin koโ€™rsatib oโ€™tamiz. a) ๐‘ โ‰ก 8๐‘š ยฑ 1 shakldagi tub son boโ€™lsin. U holda ๐‘ 2 โˆ’ 1 8 = (8๐‘š ยฑ 1) 2 โˆ’ 1 8 = 8๐‘š2 ยฑ 2๐‘š โ‰ก 0 (๐‘š๐‘œ๐‘‘ 2) Boโ€™lgani uchun ( 2 ๐‘ ) โ‰ก 1. b) ๐‘ โ‰ก 8๐‘š ยฑ 3 shakldagi tub son boโ€™lsa, ๐‘ 2 โˆ’ 1 8 = (8๐‘š ยฑ 3) 2 โˆ’ 1 8 = 8๐‘š2 ยฑ 6๐‘š + 1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ 2) boโ€™adi. Demak, ๐‘ โ‰ก 8๐‘š ยฑ 3 shakldagi tub son boโ€™lsa, 2 son p modul boyicha kvadratik chegirmamas boโ€™lad, yaโ€™ni ( 2 ๐‘ ) โ‰ก โˆ’1. 6-xossa. Oโ€™zarolik qonuni. Agar p va q lar har xil toq tub son boโ€™lsa, ( ๐‘ ๐‘ž ) โˆ™ ( ๐‘ž ๐‘ ) โ‰ก (โˆ’1) ๐‘โˆ’1 2 โˆ™ ๐‘žโˆ’1 2 (4) tenglik oโ€™rinli boโ€™ladi. Bu xossani ham isbot qilmasan uning amaliy mashgโ€™ulotlardaqoโ€™llanishini koโ€™rsatmiz. Buning uchun (4) ning har ikkaa qismini ( ๐‘ ๐‘ž ) ga koโ€™paytiramiz: ( ๐‘ž ๐‘ ) โ‰ก (โˆ’1) ๐‘โˆ’1 2 โˆ™ ๐‘žโˆ’1 2 ( ๐‘ ๐‘ž ), (5) bu yerda ( ๐‘ ๐‘ž ) 2 = 1. (5) tenglikka asosan, p va q larning kamida bittasi 4m+1 shakldagi son boโ€™lsa, (โˆ’1) ๐‘โˆ’1 2 โˆ™ ๐‘žโˆ’1 2 = 1 boโ€™lib, ( ๐‘ ๐‘ž ) = ( ๐‘ž ๐‘ ) hosil boladi. Agar p va q larning har biri 4m+3 shaklagi tub son boโ€™lsa,u holda (-1) ning darajasi toq son boโ€™lib, ( ๐‘ ๐‘ž ) = โˆ’ ( ๐‘ž ๐‘ ) boโ€™ladi. Misol. ๐‘ฅ 2 โ‰ก 426(๐‘š๐‘œ๐‘‘ 491) taqqoslama yechimga egami? Bu savolga javob berish uchun ( 426 491) Lejandr simvolini tuzamiz. 426 = 2 โˆ™ 3 โˆ™ 71 shakldagi son boโ€™lgani uchun 4- xossaga asosan quyidagicha yozamiz: ( 426 491) โ‰ก ( 2 491) โˆ™ ( 3 491) โˆ™ ( 71 491) . 1. ( 2 491) โ‰ก โˆ’1, chunki 491 โ‰ก 3 (๐‘š๐‘œ๐‘‘ 8). 2. ( 3 491) โ‰ก โˆ’ ( 491 3 ) โ‰ก โˆ’ ( 2 3 ) โ‰ก โˆ’(โˆ’1) = 1, chunki 491 โ‰ก 3 (๐‘š๐‘œ๐‘‘ 4) va 3 โ‰ก 3 (๐‘š๐‘œ๐‘‘ 4) hamda 3 โ‰ก 3 (๐‘š๐‘œ๐‘‘ 8). 3. ( 71 491) โ‰ก โˆ’ ( 491 71 ) โ‰ก โˆ’ ( 65 71) โ‰ก โˆ’ ( 5 71) โˆ™ ( 13 71) โ‰ก โˆ’ ( 71 5 ) โˆ™ ( 71 13) โ‰ก โˆ’ ( 1 5 ) โˆ™ ( 6 13) โ‰ก โˆ’ ( 2 13) โˆ™ ( 3 13) โ‰ก โˆ’(โˆ’1) ( 13 3 ) โ‰ก 1 โˆ™ ( 1 3 ) โ‰ก 1, chunki 491 โ‰ก 3(๐‘š๐‘œ๐‘‘ 4), 71 โ‰ก 3 (๐‘š๐‘œ๐‘‘ 4), 491 โ‰ก 65 (๐‘š๐‘œ๐‘‘ 71), 5 โ‰ก 1 (๐‘š๐‘œ๐‘‘ 4), 13 โ‰ก 5 (๐‘š๐‘œ๐‘‘ 8). Demak, ( 426 491) โ‰ก (โˆ’1) โˆ™ 1 โˆ™ 1 = โˆ’1, ( 426 491) โ‰ก โˆ’1 , boโ€™lgan uchun berilgan taqqoslama yechimga ega emas.
Download 82.5 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling