Sonli usullar va chiziqli dasturlash fanidan 1-mustaqil ish
Quyidagi birinchi tartibli differentsial tenglamalar uchun Koshi masalasini h=0,1 bo‘lganda;
Eyler usulida
Runge-Kutta usulida.
Taqribiy yechimini topish dasturini tuzing.
Har bir talaba o’zining Hemis tizimidagi o’rniga mos bo’lgan masalani ishlaydi.
Javob fayli hisobotida.
O’zingizga tegishli masala sharti;
Tanlangan yechish usuli formulasi;
Dastur kodi;
Natijasi;
Va oxirida bir nechta usullarda topilgan yechimlar tahlili va xulosasi
Bo’lishi shart
y'=x/(x+y) y(0)=1 [0,1]
y'-2y=3ex y(0,3)=1,415 [0,1;0,5]
y'=x+y2 y(0)=0 [0;0,3]
y'=y2-x2 y(1)=1 [1;2]
y'=x2+y2 y(0)=0.27 [0;1]
y'+xy(9-y2)=0 y(0)=0.5 [0;1]
y'=x2-xy+y2 y(0)=0.1 [0;1]
y'=(2y-x)/y y(1)=2 [1;2]
y'=x2+xy+y2+1 y(0)=0 [0;1]
y'+y=x3 y(1)=-1 [1;2]
y'=xy+ey y(0)=0 [0;0.1]
y'=2xy+x2 y(0)=0 [0;0.5]
y'=x+ y(0)=1 [0;1]
y'=ex-y2 y(0)=0 [0;0.4]
y'=2x+cosy y(0)=0 [0;0.1]
y'=x3+y2 y(0)=0.5 [0;0.5]
y'=xy3-y y(0)=1 [0;1]
y'=y2ex-2y y(0)=1 [0;1]
y'= y(1)=0 [1;2]
y'= y(1)=1 [1;2]
y'=excosy/x y(1)=1 [1;2]
y'=exsiny/x y(1)=1 [1;2]
y'cosx-ysinx=2x y(0)=0 [0;1]
y’=ytgx- y(0)=0 [0;1]
y'+ycosx=cosx y(0)=0 [0;1]
y’= y(0)=0 [0;1]
y'=(9+ )2 y(1)=1 [1;2]
xy'- -x=0 y(1)=1/2 [1;2]
y'= (9+lny-lnx) y(1)=e [1;2]
y3xdx=(x2y+2)dy y(0.348)=2 [0;1]
Do'stlaringiz bilan baham: |