F. m f. n. Saydazim Mamaraximovich Samatov
Download 0.71 Mb. Pdf ko'rish
|
1-Mavzu amaliy topshiriqlar
Samarqand davlat universiteti. Mexanika-matematika fakulteti. Matematik fizika va funksional analiz kafedrasi. F.-m.f.n. Saydazim Mamaraximovich Samatov
2-Amaliy mashg`ulot. Shartsiz extremum masalalari uchun gradiyentli usullariga doir misollar 1- Sahifa
/ ) ( 0 vektor va 2 0 2 / ) ( x x f matrisani hisoblang hamda 2 0 2 / ) ( x x f matrisaning ishorasini tekshiring. Har bir talaba jurnal raqamidagi misolni ishlaydi!!!! 1) ); 1 ; 1 ( , 2 1 2 3 ) ( 0 2 1 2 2 1 2 1 x x x x x x x x f
); 1
0 ; 1 ( , 2 4 ) ( 0 3 2 3 1 2 3 2 2 2 1 3 2 1
x x x x x x x x x x x f
); 4
; 1 ; 2 1 ( , 5 10 2 ) ( 0 3 2 2 1 3 3 3 1 x x x x x x x f
) 3
6 ; 0 ( , ln sin ) ( 0 3 2 1 x x x e x f x 5) 1 , 2 1 , 2 12 3 ) ( 0 1 2 1 2 2 2 1 x x x x x x x f
; 2
, 1 , 1 , 3 4 6 ) ( 3 0 1 2 1 2 3 2 2 2 1 R x x x x x x x x f 7) ; 2 , 1 , 2 1 , 4 3 2 ) ( 3 0 3 2 1 1 3 3 3 2 3 1
x x x x x x x x x f
8) ; 4 1 , 0 , 2 , 9 7 4 3 2 ) ( 3 0 3 2 1 3 2 3 3 2 2 2 1
x x x x x x x x x x f
9) ; 1 , 1 , 2 , 8 5 2 3 4 ) ( 3 0 2 1 2 1 2 2 3 1 R x x x x x x x x f
10) )) 1 , , 1 , 1 ( ), 2 1 ( ) , , ( 0 2 1 2 2 1 1 x nx x x x x x x x f n n n n Samarqand davlat universiteti. Mexanika-matematika fakulteti. Matematik fizika va funksional analiz kafedrasi. F.-m.f.n. Saydazim Mamaraximovich Samatov
2-Amaliy mashg`ulot. Shartsiz extremum masalalari uchun gradiyentli usullariga doir misollar 2- Sahifa
1 , 3 2 , 2 , 4 8 7 5 ) ( 0 3 3 2 2 2 1 3 1 x x x x x x x f 12) ; 2 , 1 , 2 1 , 2 2 4 3 2 ) ( 3 0 3 1 2 3 2 2 2 1 3 2 2 1 R x x x x x x x x x x x f 13) ; ) 1 , 3 1 , 2 ( , 3 4 7 3 ) ( 2 0 3 3 2 1 3 2 2 1 R x x x x x x x f
14) ; 1 , 1 . 2 1 , 3 2 ) ( 3 0 3 2 3 2 4 3 2 2 1 3 1
x x x x x x x x x x f 15) ; 1 , 3 1 , 1 , 3 10 16 4 ) ( 3 4 3 3 2 1 4 2 3 1 R x x x x x x x f 16) ; 2 1 , 1 , 1 , 8 9 ) 6 ( ) 5 ( ) 4 ( ) ( 3 0 3 2 2 1 2 3 2 2 2 1 R x x x x x x x x x f
17) ; 1 , 2 , 4 1 , 8 6 3 4 ) ( 2 0 2 4 3 2 1 2 2 2 1
x x x x x x x x f 18) ; 2 , 2 1 , 1 , 5 4 4 3 ) ( 3 0 1 2 2 1 2 3 4 2 6 1 R x x x x x x x x f
19) ; 1 , 3 1 , 2 1 , 7 3 ) ( 3 0 3 2 1 6 3 4 2 4 1 R x x x x x x x x f 20) 3 0 3 2 2 3 2 1 2 2 2 1 2 1 , 2 , 1 , 2 9 4 2 3 ) ( R x x x x x x x x x f 21) ; 1 , 2 , 3 1 , 5 2 4 3 ) ( 3 0 1 2 1 4 3 2 2 2 1
x x x x x x x x f
22) ; 1 , 2 1 , 3 1 , 6 3 2 3 ) ( 3 3 2 1 2 3 3 2 4 1
x x x x x x x x f
Samarqand davlat universiteti. Mexanika-matematika fakulteti. Matematik fizika va funksional analiz kafedrasi. F.-m.f.n. Saydazim Mamaraximovich Samatov
2-Amaliy mashg`ulot. Shartsiz extremum masalalari uchun gradiyentli usullariga doir misollar 3- Sahifa
1)
; min(max), 4 6
) ( 2 2 2 2 1 2 1 R x x x x x x f 2)
; min(max), 2 2
( 3 3 1 2 3 2 2 2 1 3 2 2 1
x x x x x x x x x x x f
3) ; min(max), 2 4
) ( 2 2 1 2 2 2 1 R x x x x x x f
; min(max), 2 ) ( 3 3 2 3 2 2 3 2 2 1 2 1 R x x x x x x x x x x f 5)
; min(max), 128 90
9 ) ( 2 2 1 2 2 2 1 R x x x x x x f
6) ; min(max), ) 3
) 2 ( ) 1 ( ) ( 3 3 2 2 1 2 3 2 2 2 1 R x x x x x x x x x f
7) ; min(max), 26 2 ) ( 2 1 2 1 2 2 2 1 R x x x x x x x f
8) ; min(max), 4 6 5 ) ( 3 1 2 1 2 3 2 2 2 1 R x x x x x x x x f 9)
; min(max), ) (
3 2 1 3 3 3 2 3 1 R x x x x x x x x f
10) ; min(max), ) (
3 2 1 3 2 2 1 2 3 2 2 2 1 R x x x x x x x x x x x x f 11)
; min(max), 5 6
3 4 ) ( 3 2 1 2 1 2 2 2 1 R x x x x x x x x f 12)
; min(max), ) 6
) ( 2 2 1 2 1 R x x x x x x f 13) 2 2 1 2 2 4 1 2 1 (max),
min 3 ) , (
x x x x x x x f 14) 3 4 3 2 2 2 1 3 2 1 (max), min 2 ) , , ( R x x x x x x x f 15) min(max)
0 agar
, 2 0 agar , ) , ( 2 2 2 1 2 2 2 1 2 2 2 1 2 1 x x x x x x x x f 16) 1 : , ) , ( agar min(max), 2 )
( 2 2 3 2 y x R y x D y x y x y x f 17) 2 2 2 2 1 2 1 , 2 ) 1 ( ) , ( R x extr x x x x f 18) 2 2 2 2 1 2 1 4 2 4 1 2 1 , 2 4 2 ) , ( R x extr x x x x x x x x f
Samarqand davlat universiteti. Mexanika-matematika fakulteti. Matematik fizika va funksional analiz kafedrasi. F.-m.f.n. Saydazim Mamaraximovich Samatov
2-Amaliy mashg`ulot. Shartsiz extremum masalalari uchun gradiyentli usullariga doir misollar 4- Sahifa
2 ) ( 2 2 2 1 2 1 , ) , ( 2 2 2 1
x extr e x x x x f x x 20) 2 2 2 1 2 1 2 1 1 1 ) , (
x x x x x f 21) 0 , , min(max), 2 4
, , ( 2 2
y x z y z x y x z y x f 22) ] , 0 [ , (max), min
) sin(
sin sin
) , (
x y x y x y x f 23) 0 , , min(max), ) 2
( ) , , ( 1 2 1 2 2 1 1 n n n n n x x nx x x x x x x x f
24) ; min(max), 7 4 3 ) ( 2 2 2 2 1 2 1 R x x x x x x f 25) ; min(max), 2 2 4 3 2 ) ( 3 3 1 2 3 2 2 2 1 3 2 2 1
x x x x x x x x x x x f 26) ; min(max), 2 4 5 3 ) ( 2 2 2 1 2 2 2 1
x x x x x x x f 27) ; min(max), 3 2 ) ( 3 3 2 3 2 2 3 2 2 1 2 1 R x x x x x x x x x x f 28) ; min(max), 34 10 16 4 ) ( 2 2 1 2 2 2 1 R x x x x x x f 29) ; min(max), 3 2 ) 5 ( ) 4 ( ) 3 ( ) ( 3 3 2 2 1 2 3 2 2 2 1 R x x x x x x x x x f
30) ; min(max), 8 6 3 4 ) ( 2 1 2 1 2 2 2 1
x x x x x x x f
31) ; min(max), 5 6 4 3 ) ( 3 1 2 1 2 3 2 2 2 1 R x x x x x x x x f 32) ; min(max), 3 3 2 ) ( 3 3 2 1 3 3 3 2 3 1 R x x x x x x x x f 33) 3 2 1 2 1 2 2 2 1 min(max), 2 9
7 ) ( R x x x x x x x x f
Download 0.71 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling