[-]
Download 1,57 Mb. Pdf ko'rish
|
funksional analiz misol va masalalar yechish 1 qism
x, y)
X × Y & " R & ! ! & - pr 1 R = {x : x ∈ X, ∃ y ∈ Y, (x, y) ∈ R} , pr 2 R = {y : y ∈ Y, ∃ x ∈ X, (x, y) ∈ R} . ' & R ' A(X) X ! & [ ! 1 & A ∪ B = B ∪ A, A ∩ B = B ∩ A. x ∈ A ∪ B ' x ∈ A ∨ x ∈ B =⇒ x ∈ B ∨ x ∈ A =⇒ x ∈ B ∪ A \ A ∪ B ⊂ B ∪ A * y ∈ B ∪ A y ∈ B ∨ y ∈ A =⇒ y ∈ A ∨ y ∈ B =⇒ y ∈ A ∪ B ( B ∪ A ⊂ A ∪ B _ A ∪ B = B ∪ A ! \ - (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C). x ∈ (A ∪ B) ∩ C 1 ( x ∈ A ∪ B ∧ x ∈ C ' (x ∈ A ∨ x ∈ B) ∧x ∈ C =⇒ x ∈ A∪C ∧ x ∈ B∪C =⇒ x ∈ (A∪C)∩(B∩C) ! \ (A ∪ B) ∩ C ⊂ (A ∪ C) ∩ (B ∪ C) * y ∈ (A ∪ C) ∩ (B ∪ C) y ∈ A ∪ C ∧ y ∈ B ∪ C =⇒ (y ∈ A ∨ y ∈ C) ∧ (y ∈ B ∨ y ∈ C) ' y ∈ (A ∪ B) ∩ C ( (A ∪ C) ∩ (B ∪ C) ⊂ (A ∪ B) ∩ C _ (A ∪ B) ∩ C = (A ∪ C) ∩ (B ∪ C) ! (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) 1 & ! _ ! ! - E \ ∪ α A α = ∩ α (E\A α ), A α ⊂ E. (1.1) x ∈ E\ ∪ α A α x ∈ E x / ∈ ∪ α A α ! ' α ! x A α & \ x A α & ! 2 α ! x ∈ E\A α " x ∈ ∩ α (E\A α ) ' E \ ∪ α A α ⊂ ∩ α (E\A α ) (1.2) ! [ * x ∈ ∩ α (E\A α ) ! α x ∈ E\A α x A α & x / ∈ ∪ α A α \ x ∈ E\ ∪ α A α ' E \ ∪ α A α ⊃ ∩ α (E\A α ) (1.3) 3#%5 3#`5 3##5 A = {(x, y) : |x| ≤ 4, |y| ≤ 4} B = (x, y) : x 2 + y 2 ≤ 25 &" ! A ∪B, A\B, AΔB, A∩B & " ! "# 1 ! ' A = [−4; 4] × [−4; 4] B a & 3##"! 5 A ∪ B − ##"! A \B ! " A ΔB − ! A ∩ B − ! ""# $ (X\Y ) \Z = X\ (Y ∪ Z) ' & A ⊂ B B ⊂ A [ x ∈ (X\Y ) \Z " , x ∈ X\Y, x /∈ Z ⇒ x ∈ X, x /∈ Y, x /∈ Z ⇒ x ∈ X, x /∈ (Y ∪ Z) ⇒ x ∈ X\(Y ∪ Z) \ (X\Y ) \Z ⊂ X \ (Y ∪ Z) [ y ∈ X \(Y ∪ Z) , y ∈ X, y /∈ Y ∪ Z ' y ∈ X, y /∈ Y, y /∈ Z y ∈ X\Y, y /∈ Z + y ∈ (X\Y )\Z \ (X\Y ) \Z ⊃ X\ (Y ∪ Z) . (X\Y ) \Z = X\ (Y ∪ Z) ! % (X ∩ X 1 ) × (Y ∩ Y 1 ) = (X × Y ) ∩ (X 1 × Y 1 ) ' #a" ∀(x, y) ∈ (X ∩X 1 )× (Y ∩ Y 1 ) ⇒ x ∈ X ∩ X 1 , y ∈ Y ∩ Y 1 ' x ∈ X, y ∈ Y ∧ x ∈ X 1 , y ∈ Y 1 ⇒ (x, y) ∈ X × Y ∧ (x, y) ∈ X 1 × Y 1 (x, y) ∈ (X × Y ) ∩ (X 1 × Y 1 ) _ ( (X ∩ X 1 ) × (Y ∩ Y 1 ) ⊂ (X × Y ) ∩ (X 1 × Y 1 ) 1 ! (x, y) ∈ (X × Y ) ∩ (X 1 × Y 1 ) 2 (X ∩X 1 ) ×(Y ∩Y 1 ) = (X ×Y )∩(X 1 ×Y 1 ) & {A n } & " ! {B n } & " " 5 B n ⊂ A n , B i ∩ B j = ∅, i = j, ∞ ∪ n =1 B n = ∞ ∪ n =1 A n 4 5 B n ⊃ A n , B n +1 ⊃ B n , ∞ ∪ n =1 B n = ∞ ∪ n =1 A n 4 !5 B n ⊂ A n , B n +1 ⊂ B n , ∞ ∩ n =1 B n = ∞ ∩ n =1 A n ! "# ' {A n } " ! {B n } & " ! B 1 = A 1 , B 2 = A 2 \A 1 , . . . , B n = A n \ n −1 ∪ k =1 A k , . . . . {B n } & " 5 ! < 5 !5 " ! {B n } & " - 5 B 1 = A 1 , B 2 = A 1 ∪ A 2 , . . . , B n = n ∪ k =1 A k , . . . !5 B 1 = A 1 , B 2 = A 1 ∩ A 2 , . . . , B n = n ∩ k =1 A k , . . . . ' , m n − 1 4n 2 , m n + 1 4n 2 , m ∈ Z, n ∈ N ! √ 2 ! \ m ∈Z n ∈N m n − 1 4n 2 , m n + 1 4n 2 = R. √ 2 m, n ! |m 2 −2n 2 | = 0 ' |m 2 −2n 2 | ≥ 1 [ m ∈ Z n ∈ N ! | m n − √ 2| > 1 4n 2 ' √ 2 ∈ m ∈Z n ∈N m n − 1 4n 2 , m n + 1 4n 2 ! * m ≤ 0 | m n − √ 2| > √ 2 > 1, 4 > 1 4n 2 \ m > 0 ( n ∈ N ! | m n − √ 2| > 1 4n 2 * m n ≥ 2 2 n, m ∈ N m n < 2 , 1 ≤ |m 2 − 2n 2 | ⇐⇒ 1 n 2 ≤ | m 2 n 2 − 2| = | m n − √ 2| ( m n + √ 2) ≤ ≤ (2 + √ 2) | m n − √ 2| < 4 | m n − √ 2|. ' | m n − √ 2| > 1 4n 2 ! 2 m ∈ Z n ∈ N ! √ 2 ∈ m n − 1 4n 2 , m n + 1 4n 2 . 2 () * +, * *+- + # - #$"##8" . 1 & (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C). / = ! ! - E \ ∩ α A α = ∪ α (E\A α ), A α ⊂ E. (1.4) A ΔB = (A ∪ B)\(A ∩ B) . A ∪ B = (A Δ B) Δ (A ∩ B) . A \B = A Δ (A ∩ B) . * A ⊂ E, B ⊂ E (E\A)Δ(E\B) = AΔB $ (A ∪ B)Δ(C ∪ D) ⊂ (AΔC) ∪ (BΔD). % A B & ! A ⊂ B ∪ (AΔB) & * A 1 A 2 & B 1 B 2 ! B 1 ∩ B 2 ⊂ (A 1 ΔB 1 ) ∪ (A 2 ΔB 2 ) ##W"#%b" A B & ! A ∪ B, A\B, A ΔB, A ∩ B & & #%`"#%b" A ∪ B, A\B, AΔB, A ∩ B & ' A = [0, 1] , B = (0, 1) . . A = {2, 4, 6, . . ., 2n, . . .} , B = {3, 6, 9, . . ., 3n, . . .} . / A = Q, B = R\Q− & A = [0, 1] \Q, B = [0, 1] ∩ Q A = {x ∈ R : sin 4x = 0} , B = {x ∈ R : cos 2x = 0} . A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} , B = {(x, y) : 0 ≤ x ≤ 1, x ≤ y ≤ 1} . A = (x, y) : x 2 + y 2 ≤ 16 , B = (x, y) : x 2 25 + y 2 9 ≤ 1 . #%a"#`W" $ X ⊂ Y ⇐⇒ X ∪ Y = Y ⇐⇒ X ∩ Y = X. % X ⊂ Z ∧ Y ⊂ Z ⇐⇒ X ∪ Y ⊂ Z. & Z ⊂ X ∧ Z ⊂ Y ⇐⇒ Z ⊂ X ∩ Y. ' X \Y = X\ (X ∩ Y ) = (X ∪ Y ) \Y. . X \ (Y \Z) = (X\Y ) ∪ (X ∩ Z) . / (X\Y ) ∩ (Z\U) = (X ∩ Z) \ (Y ∪ U) . X ∩ (Y \Z) = (X ∩ Y ) \ (X ∩ Z) . (X\Z) ∩ (Y \Z) = (X ∩ Y ) \Z. (X ∪ Y ) \Z = (X\Z) ∪ (Y \Z) . X ∩ Y = ∅ ⇐⇒ X ⊂ CY ⇐⇒ Y ⊂ CX. $ X ⊂ Y ⇐⇒ CY ⊂ CX. % X Δ Y = Y Δ X. & X Δ X = ∅. ' X Δ ∅ = X. . 2 X ⊂ Z Y ⊂ Z & & X × Y = Y × X X × Y = Y × X X = Y ! c / X = {1, 3, 5} , Y = {2, 4} & ! X × Y, Y × X & ! X × Y = Download 1,57 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling