“Fizika” fanidan mustaqil ishi 3
Download 0.66 Mb. Pdf ko'rish
|
1 2
Bog'liqFizika 3
- Bu sahifa navigatsiya:
- QARSHI – 2023 3-mustaqil ish
O’ZBEKISTON RESPUBLIKASI AXBOROT TEXNOLOGIYALARI VA KOMMUNIKATSIYALARINI RIVOJLANTIRISH VAZIRLIGI MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI QARSHI FILIALI KI-13-22 (S) GURUH TALABASINING “Fizika” fanidan MUSTAQIL ISHI 3 Bajardi: Bobokeldiyev Doston Qabul qildi: Jumayev N QARSHI – 2023 3-mustaqil ish 1. Yupqa qatlamlarning tuzilishi va xossalari 2. Kvant o’ralar va ularning xususiyatlari 3. Nanoo’lchamli klasterlar va kristallar.Nanotexnologiyalar 4. Fizikaviy jarayonlarni modellashtirish imkonini beruvchi dasturlar orqali fizikaviy jarayonlarni modellashtirish 5. Suyuq kristallar va ularning xususiyatlari Nanofizika va nanotexnologiyalarni asoschisi yirik fizikolim Richard Feynman (1918-1988). Amerika fiziklar jamiyatining majlisida 1959 yilda qilgan “Pastda hali ko’p joy” ma’ruzasida bashorat qilib , qator g’oyalarni oldinga surdi. R.Feynmanni fikri bo’yicha odamlar juda uzoq vaqt davomida yonida bir dun’yo borligini bilmasdan yashab kelgan. Biror narsani ko’rmasak u bilan ishla olmaymiz. 1993 yildan boshlab R.Feynman nomidagi mukofot har yili nanotexnologiyalar sohasida buyuk yutuqlarga erishganlarga beriladi. Mikroob’yektlar yaratishni rag’batlantirish uchun R.Feynman 1mm dan kichik elektromotor yaratganiga 1000$ mukofot e’lon qilgan. Va ko’p vaqt o’tmasdan bunday motor yaratilgan. Nanofizika va nanotexnologiyalarni asoschisi yirik fizikolim Richard Feynman (1918-1988). Amerika fiziklar jamiyatining majlisida 1959 yilda qilgan “Pastda hali ko’p joy” ma’ruzasida bashorat qilib, qator g’oyalarni oldinga surdi. R.Feynmanni fikri bo’yicha odamlar juda uzoq vaqt davomida yonida bir dun’yo borligini bilmasdan yashab kelgan. Biror narsani ko’rmasak u bilan ishla olmaymiz. 1993 yildan boshlab R.Feynman nomidagi mukofot har yili nanotexnologiyalar sohasida buyuk yutuqlarga erishganlarga beriladi. Mikroob’yektlar yaratishni rag’batlantirish uchun R.Feynman 1mm dan kichik elektromotor yaratganiga 1000$ mukofot e’lon qilgan. Va ko’p vaqt o’tmasdan bunday motor yaratilgan. Nanomateriallar – nanozarrachalar yoki nanotexnologiyalar yordamida yaratilgan va o’lchamlari juda kichikligi hisobiga i ajoib xusussiyatlarga ega bo’lgan materiallar. Nanomateriallarga hech bo’lmasa bitta o’lchami 1 dan 100 nm oralikda yotgan materiallar tegishli. Umuman, nanotexnologiyaning, jumladan, nanoelektronikaning rivojlanishi barcha jabhalarda ishlatiladigan elektron asboblar va qurilmalarning yangi va mukammal hamda o’ta sezgir turlarini yaratish bilan bir qatorda, respublikamiz xomashyo zahirasini 10-100 martagacha tejash hamda ekologik muhitga ta’sirini kamaytirish imkonini beradi. Ushbu tadqiqotni amaliyotga tatbiq etish, eng avvalo, kundalik hayotimizda qo’llanadigan kompyuter xotirasini kuchaytirish va uning operativ xotirasini oshirishda qo’l kelishi, mazkur qurilmaning extiyot qismlarini tashqi muhit ta’siridan asrashga xizmat qilishi bilan ahamiyatlidir. Bundan tashqari, kashfiyotdan tibbiyotda xastalikning eng og’ir asoratlarini davolashda foydalanish mumkin ekan. Misol uchun, bosh miyadagi shishlar nanorobot uskunasi yordamida aniqlanib, shu joyning o’ziga ta’sir o’tkazilib, kasallik rivojlanishi to’xtatiladi. Qon tomirlari orqali kishi organizmida paydo bo’lgan o’simtani jarrohlik amaliyotisiz butkul chiqarib yuborish mumkin bo’ladi. Kishi biror-bir kasbning boshini tutdimi, albatta, shu kasbi orqali jamiyatga nafi tegishini istaydi. Yosh olima ham ayni maqsadda mamlakatimizdagi eng nufuzli oliy ta’lim dargoxlaridan biri sanalmish Abu Rayhon Beruniy nomidagi Toshkent davlat texnika universitetida faoliyat yuritib kelmokda. D.Toshmuhammedova bu yerda nanomateriallarning axborot tizimlaridagi istiq bollariga oid beshta fandan talabalarga saboq beradi. Zero, nanotexnologiya sohasini rivojlantirishda yosh mutaxassislar malakasi har jihatdan zarurdir. O’z navbatida, bu mamlakatimiz va jahon miqyosida o’tkazilayotgan ilmiy anjumanlarda faol ishtirok etishni ham taqozo etadi. Kvant mexanikasi, toʻlqin mexanikasi — nazariy fizikaning juda kichik o'lchamli zarralar (elementar zarra, atom , molekula va h.k.) harakat qonunlarini oʻrganuvchi boʻlimi. XX asr boshida qator omillar — atomlarning turgʻunligi, fotoeffekt , radioaktivlik, qora jismning nurlanishi singari hodisalarni klassik mexanika va klassik elektrodinamika asosida tushuntirib berish imkoni boʻlmay qolganligi kvant mexanikasini paydo boʻlishiga olib keldi. Max Planck , Albert Einstein va Niels Bohr kabi olimlarning ishlari kvant mexanikasining yaratilishiga asos boʻldi. Klassik fizika qonunlarini juda kichik massali zarralarga tatbiq qilishda olingan xulosalar klassik tasavvurlarni tubdan oʻzgartirishni talab qildi. Klassik fizikada qizdirilgan jism nurlanishi energiyasining qiymatlari uzluksiz boʻladi, deb faraz qilinadi. 1900-yilda M. Plank moddada elektromagnit nurlanishni muvozanatda boʻlish shartini tadqiq qildi. U nurlanish energiyasi chiqayotganda yoki yutilayotganda faqat uzlukli (kvantlangan) qiymatlargagina ega boʻlishi mumkinligi toʻgʻrisidagi gipotezani ilgari surdi. 1905-yilda A. Eynshteyn yorugʻlik tushayotgan metallardan tashqariga elektron chiqish hodisasi (fotoeffekt) ni tekshirib, energiya faqat yutilib yoki chiqibgina qolmay, u nurlanish kvanti — foton koʻrinishida ham mavjud boʻladi, degan xulosaga keldi. Foton energiyasi �= ℎ� ga teng, bunda ℎ — Plank doimiysi, � — elektromagnit nurlanish chastotasi. 1913-yilda N. Bor yorugʻlikning kvantlar nazariyasini atomlarning tuzilishi masalasiga tatbiq qilib, atomdagi elektron shu atom yadrosining atrofida klassik mexanika qonunlariga boʻysunadigan aniq orbitalar boʻyicha harakat qilishini koʻrsatdi. Bunda orbitalarning har birida elektron aniq energiyali holatda, yaʼni barqaror holatda boʻlib, hech qanday nurlanish roʻy bermaydi ( Bor postulatlari ). Atomning nur yutishi yoki nur chiqarishi faqat elektronning bir orbitadan boshqa orbitaga oʻtishi bilan bogʻliq. Bor nazariyasi eng sodda atom — vodorod atomining nurlanish xususiyatlarini tushuntirib bera oldi. Ammo murakkab atomlarga, molekulalarga bu nazariyani qoʻllashning iloji boʻlmadi. 1924-yilda L. de Broyl modda yorugʻlik kabi ham zarra, ham toʻlqin xususiyatlariga ega boʻladi, degan gipotezani ilgari surdi. L. de Broyl aytgan moddiy zarraning toʻlqin xususiyatlari qar tomonlama tasdiqlandi. Shunday qilib, korpuskulyar-toʻlqin dualizmi gʻoyasi tasdiqlandi: bu gʻoyaga binoan, toʻlqin xususiyatga ega obʼyektda zarra xususiyati ham uygʻonadi, zarra esa maʼlum sharoitlarda oʻzini toʻlqinlardek tutadi. 1926-yilda E. Shryodinger zarralar harakatining toʻlqin nazariyasi ustida ishlab, moddiy zarralarning zarra va toʻlqin xususiyatlarini ifodalovchi tenglamani taklif qildi. Bu tenglama eng sodda atom — vodorod atomi masalasini aniq yechib berdi. Koʻp elektronli sistemalar uchun Shryodinger tenglamasi aniq yechilmaydi, bu yerda taqribiy yechish usullari (variatsion usul, Hartri — Fok usuli va boshqalar) ishlatiladi. Kvant mexanikada barcha zarralar korpuskulyar va toʻlqin xossalariga ega deb qaraladi; zotan bu xossalar bir-birini istisno qilmaydi, balki bir-birini toʻldiradi. Elektronlar, protonlar va boshqa zarralarning toʻlqin tabiati zarralar difraksiyasiga oid tajribalarda tasdiqlandi. Kvant mexanikada zarraning toʻlqin xususiyati toʻlqin funksiya (Ψ -funksiya) orqali bayon etiladi. Toʻlqin funksiya aslida statistik harakterga ega ekanligini birinchi boʻlib 1927-yilda M. Born aytdi. Toʻlqin funksiyaning statistik maʼnosi, yaʼni zarraning biror hajm birligida boʻlish ehtimolligi — toʻlqin funksiya modulining kvadrati |Ψ|2 bilan ifodalanadi. Demak, Kvant mexanikada zarraning holatini bir vaqtda aniq koordinata va impuls orqali ifodalash mumkin emas, u faqat toʻlqin funksiya orqaligina aniqlanadi. Zarraning koordinata bilan impulsi V. Geyzenberg tomonidan kashf etilgan noaniqliklar munosabatiga boʻysunadi. Nisbiylik nazariyasini qoʻllab, Kvant mexanikani umumlashtirish natijasida relyativistik kvant mexanika paydo boʻldi. Kvant mexanikaning yaratilishi va rivojlanishida M. Born, P. Dirak, V. Pauli, E. Fermi , shuningdek, L. D. Landau va V. A. Fok kabi olimlarning ishlari muhim rol oʻynadi. Kvant mexanika yaratilishi yarimoʻtkazgichlar fizikasi va texnikasi, past temperaturalar fizikasi, kvant elektronika, yadro fizikasi va atom energetikasi, astrofizika, va ayniqsa ohirgi yillarda kvant kompyuterlari va kvant informatikasi soxalarning tez rivojlanishiga sabab boʻldi. Model (lot.modulus-o‘lchov, meyyor)–biror ob‘yekt yoki ob‘yektlar tizimining obrazi yoki namunasidir. Masalan, Yerning modeli - globus , osmon va undagi yulduzlar modeli - plannetariy ekrani, pasportdagi sur‘atni shu pasport egasining modeli deyish mumkin. Insoniyatni farovon hayot shart-sharoitlarini yaratish, tabiiy ofatlarni oldindan aniqlash muammolari qadimdan qiziqtirib kelgan. Shuning uchun ham insoniyat tashqi dunyoning turli hodisalarini o‘rganishi tabiiy holdir. Aniq fanlar sohasi mutahassislari u yoki bu jarayonning faqat ularni qiziqtirgan hossalarinigina o‘rganadi. Masalan, geologlar Yerning rivojlanish tarixini, ya‘ni qachon, qayerda va qanday hayvonlar yashaganligi, o‘simliklar o‘sganligi, iqlim qanday o‘zgarganligini o‘rganadi. Bu ularga foydali qazilma konlarini topishlarida yordam beradi. Lekin ular Yerda kishilik jamiyatining rivojlanish tarixini o‘rganishmaydi, bu bilan tarixchilar shug‘ullanadi. Atrofimizdagi dunyoni o‘rganish natijasida noaniq va to‘liq bo‘lmagan ma‘lumotlar olinishi mumkin. Lekin bu koinotga uchish, atom yadrosining sirini aniqlash, jamiyatning rivojlanish qonunlarini egallash va boshqalarga halaqit qilmaydi. Ular asosida o‘rganilayotgan hodisa va jarayonlarning modeli yaratiladi. Model ularning xususiyatlarini mumkin qadar to‘laroq akslantirishi zarur. Modelning taqribiylik xarakteri turli ko‘rinishda namoyon bo‘lishi mumkin. Masalan, tajriba o‘tkazish mobaynida foydalaniladigan asboblarning aniqligi olinayotgan natijasining aniqligiga ta‘sir etadi. Modellashtirish- bilish ob‘yektlari (fizik hodisa va jarayonlar) ni ularning modellari yordamida tadbiq qilish mavjud predmet va hodisalarning 7 modellarini yasash va o‘rganishdir. Modellash uslubidan hozirgi zamon fanida keng foydalanilmoqda. U ilmiy tadqiqot jarayonini yengillashtiradi, ba‘zi hollarda esa murakkab ob‘yektlarni o‘rganishning yagona vositasiga aylanadi. Mavhum ob‘yekt, olisda joylashgan ob‘yektlar, juda kichik hajmdagi ob‘yektlarni o‘rganishda modellashtirishning ahamiyati katta. Modellashtirish uslubidan fizika, astronomiya, biologiya, iqtisod fanlarida ob‘yektning faqat ma‘lum xususiyat va munosabatlarini aniqlashda ham foydalaniladi. Modellarni tanlash vositalariga qarab ularni uch guruhga ajratish mumkin. Bular abstrakt, fizik va biologik guruhlar. Abstrakt modellar qatoriga matematik, matematik-mantiqiy va shu kabi modellar kiradi. Fizik modellar qatoriga kichiklashtirilgan maketlar, turli asbob va qurilmalar, trenajerlar va shu kabilar kiritiladi. Modellarning mazmuni bilan qisqacha tanishib chiqamiz. 1. Fizik model. Tekshiralayotgan jarayonning tabiati va geometrik tuzilishi asl nusxadagidek, ammo undan miqdor (o‘lchami, tezligi, ko‘lami) jihatidan farq qiladigan modellar, masalan, samolyot, kema, avtomobil , poyezd, GES va boshqalarning modellari fizik modelga misol bo‘ladi. 2. Matematik modellar tirik organizmlarning tuzilishi, o‘zaro aloqasi, vazifasiga oid qonuniyatlarning matematik va mantiqiy-matematik tavsifidan iborat bo‘lib, tajriba ma‘lumotlariga ko‘ra yoki mantiqiy asosda tuziladi, so‘ngra tajriba yo‘li bilan tekshirib ko‘riladi. 3. Biologik modellar Bunda shu holat yoki kasallikning kelib chiqish mexanizmi , kechishi, oqibati kabilar tajriba asosida o‘rganiladi. Biologik modelda har hil usullar genetik apparatga ta‘sir qilish, mikroblar yuqtirish, ba‘zi organlarni olib tashlash yoki ular faoliyati mahsuli bo‘lgan garmonlarni kiritish va boshqa usullar qo‘llaniladi. Bunday modellarda genetika, fiziologiya, farmakologiya sohasidagi bilimlar tadbiq qilinadi. 4. Fizik-kimyoviy modellar biologik tuzilish, funksiya yoki jarayonlarni fizik yoki kimyoviy vositalar bilan qaytadan hosil qilishdir. 5. Iqtisodiy model taxminan XVIII asrdan qo‘llanila boshlandi. F.Kenening “Iqtisodiy jadvallar”ida birinchi marta ijtimoiy takror ishlab chiqarish jarayonini ko‘rsatishga harakat qilingan. Iqtisodiy tizimlarning turli faoliyat yo‘nalishlarini o‘rganish uchun har xil modellaridan foydalaniladi. Iqtisodiy taraqqiyotning eng umumiy qonuniyatlari xalq ho‘jaligi modellari yordamida tekshiriladi. Turli murakkab ko‘rsatkichlar, jumladan, milliy daromad, ish bilan bandlik , iste‘mol, jamg‘armalar, investisiya ko‘rsatkichlarining dinamikasi va nisbatini tahlil qilish, uni oldindan aytib berish uchun katta iqtisodiy modellar qo‘llaniladi. Aniq ho‘jalik vaziyatlarini tekshirishda kichik iqtisodiy tizimlardan, murakkab iqtisodiy tizimlarini tekshirishda, asosan, matematik modellardan foydalaniladi. Matematik modellar tirik organizmlarning tuzilishi, o‘zaro aloqasi, vazifasiga oid qonuniyatlarning matematik va mantiqiy-matematik tavsifidan iborat bo‘lib, tajriba ma‘lumotlariga ko‘ra yoki mantiqiy asosda tuziladi, so‘ngra tajriba yo‘li bilan tekshirib ko‘riladi. Biologik hodisalarning matematik modellarini kompyutyerda o‘rganish tekshirilayotgan biologik jarayonning o‘zgarish xarakterini oldindan bilish imkonini beradi. Shuni ta‘kidlash kerakki, bunday jarayonlarni tajriba yo‘li bilan tashkil qilish va o‘tkazish ba‘zan juda qiyin kechadi. Matematik va matematikmantiqiy modelning yaratilishi, takomillashishi va ulardan foydalanish matematik hamda nazariy biologiyaning rivojlanishiga qulay sharoit tug‘diradi. Matematik modellashtirish aniq fanlardagi turli amaliy masalalarni yechishda muvaffaqiyat bilan qo‘llanib kelinmoqda. Matematik modellashtirish uslubi masalani xarakterlaydigan u yoki bu kattalikni miqdor jihatdan ifodalash , so‘ngra bog‘liqligini o‘rganish imkoniyatini beradi. Uslub asosida matematik model tushunchasi yotadi. Matematik model deb o‘rganilayotgan ob‘yektni matematik formula yoki algoritm ko‘rinishida ifodalangan xarakteristikalari orasidagi funksional bog‘lanishga aytiladi. Kompyuter ixtiro etilgandan so‘ng matematik modellashning ahamiyati keskin oshdi. Murakkab texnik, iqtisodiy va ijtimoiy tizimlarni yaratish, so‘ngra ularni kompyuterlar yordamida tatbiq etishning haqiqiy imkoniyati paydo bo‘ldi. Endilikda ob‘ekt, ya‘ni haqiqiy tizim ustida emas, balki uni almashtiruvchi matematik model ustida tajriba o‘tkazila boshlandi. Kosmik kemalarning harakat trayektoriyasi, murakkab muhandislik inshootlarini yaratish, transport magistrallarini loyihalash, iqtisodni rivojlantirish va boshqalar bilan bog‘liq bo‘lgan ulkan hisoblashlarning kompyutyerda bajarilishi matematik modellash uslubining samaradorligini tasdiqlaydi. Odatda, matematik model ustida hisoblash tajribasini o‘tkazish haqiqiy ob‘yektni tajribada tadqiq etish mumkin bo‘lmagan yoki iqtisodiy jihatdan maqsadga muvofiq bo‘lmagan hollarda o‘tkaziladi. Bunday hisoblash tajribasining natijalari haqiqiy ob‘yekt ustida olib boriladigan tajribaga qaraganda juda aniq emasligini ham hisobga olish kerak. Lekin shunday misollarni keltirish mumkinki, kompyutyerda o‘tkazilgan hisoblash tajribasi o‘rganilayotgan jarayon yoki hodisa haqidagi ishonchli axborotning yagona manbai bo‘lib xizmat qiladi. Masalan, faqat matematik modellashtirish va kompyutyerda hisoblash tajribasini o‘tkazish yo‘li bilan yadroviy urushning iqlimga ta‘siri oqibatlarini oldindan aytib berish mumkin. Kompyuter yadro quroli urushida mutlaq g‘olib bo‘lmasligini ko‘rsatadi. Kompyuterli tajriba Yer yuzida bunday urush oqibatida ekologik o‘zgarishlar, ya‘ni haroratning keskin o‘zgarishi, atmosferaning changlanishi, qutblardagi muzliklar erishining ro‘y berishi, xatto, Yer o‘z o‘qidan chiqib ketishi mumkinligini ko‘rsatadi. Matematik modellashda berilgan fizik jarayonlarning matematik ifodalari modelashtiriladi. Matematik model tashqi dunyoning matematik belgilar bilan ifodalangan qandaydir hodisalar sinfining taqribiy tavsifidir. Matematik model tashqi dunyoni bilish, shuningdek, oldindan aytib berish va boshqarishning kuchli uslubi hisoblanadi. Matematik modelni tahlil qilish o‘rganilayotgan hodisaning mohiyatiga singish imkoniyatini beradi. Hodisalarni matematik model yordamida o‘rganish to‘rt bosqichda amalga oshiriladi. Birinchi bosqich - modelning asosiy ob‘yektlarini bog‘lovchi qonunlarni ifodalash. Ikkinchi bosqich - modeldagi matematik masalalarni tekshirish. Uchinchi bosqich - modelning qabul qilingan amaliyot mezonlarini qanoatlantirishni aniqlash. Boshqacha aytganda, modeldan olingan nazariy natijalar bilan olingan ob‘yektni kuzatish natijalari mos kelishi masalasini aniqlash. To‘rtinchi bosqich - o‘rganilayotgan hodisa haqidagi ma‘lumotlarni jamlash orqali modelning navbatdagi tahlilini o‘tkazish va uni rivojlantirish, aniqlashtirish. Shunday qilib, modellashtirishning asosiy mazmunini ob‘yektni dastlabki o‘rganish asosida modelni tajriba orqali va nazariy tahlil qilish, natijalarni ob‘yekt haqidagi ma‘lumotlar bilan taqqoslash, modelni tuzatish (takomillashtirish) va shu kabilar tashkil etadi. Matematik model tuzish uchun dastlab masala rasmiylashtiriladi. Masala mazmuniga mos holda zarur belgilar kiritiladi. So‘ngra kattaliklar orasida formula yoki algoritm ko‘rinishida yozilgan funksional bog‘lanish hosil qilinadi. Aytib o‘tilganlarni aniq misolda ko‘rib chiqamiz. O‘ylagan sonni topish masalasi (matematik fokus). Talabalarga ixtiyoriy sonni o‘ylash va u bilan quyidagi amallarni bajarish talab etiladi: 1. O‘ylangan son beshga ko‘paytirilsin. 2. Ko‘paytmaga bugungi sanaga mos son(yoki ixtiyoriy boshqa son) qo‘shilsin. 3. Hosil bo‘lgan yig‘indi ikkilantirilsin. 4. Natijaga joriy yil soni qo‘shilsin. Olib boruvchi biroz vaqtdan so‘ng talaba o‘ylagan sonni topishi mumkinligini ta‘kidlaydi. Ravshanki, talaba o‘ylagan son matematik fokusga mos model yordamida aniqlanadi. Masalani rasmiylashtiramiz: X-o‘quvchi o‘ylagan son, U-hisoblash natijasi, N-sana, M-joriy yil. Demak, olib boruvchining ko‘rsatmalari: U=(X5+N)2+M formula orqali ifodalanadi. Ushbu formula masalaning (matematik fokusning) matematik modeli bo‘lib xizmat qiladi va X o‘zgaruvchiga nisbatan chiziqli tenglamani ifodalaydi. Tenglamani yechamiz: X=((U-M)/2-N)/5 Ushbu formula o‘ylangan sonni topish algoritmini ko‘rsatadi. Kompyuterli modellashtirish va uning dasturiy vositalari Ma‘lumotlar omborini loyihalash va yaratishdan oldin shu ma‘lumotlar omboriga joylashtiriladigan axborotlarning umumiy tuzilishi haqida tasavvurga ega bo‘lishi lozim. Ma‘lumotlar omboridan kerakli savollarga javob olish va ma‘lumotlarga turli o‘zgartirishlar kiritish uchun ham uning umumiy tuzilishini bilish maqsadga muvofiq. Chunki ma‘lumotlar omborida qanday ma‘lumotlar borligini bilsangizgina , ularga mos savollarni qo‘ya olasiz. Bir axborotni turli xil vositalar orqali va turli shaklarda ifodalash mumkin. Axborotlarni ifodalovchi vositalar majmuini ma‘lumotlar modeli deb ataladi. Albatta, turli odamlar tashqi dunyoni turlicha talqin qiladilar va ular haqida turlicha bilimga ega bo‘ladi. Shuning uchun ham haqiqiy dunyo va undagi hodisalarni anglashda turlicha modellardan foydalaniladi. Modellashtirish yoki modellashning rasmiy muammolarini o‘rganadigan va tadqiq etadigan yaxlit nazariya mavjud. Hozirgi kunda kompyutyerda modellashtirish texnologiyasi mavjud bo‘lib, uning maqsadi atrofimizni o‘rab turgan tabiat, unda ro‘y beradigan hodisa, voqealarni va jamiyatdagi o‘zgarishlarni anglash, tushunib yetish jarayonini zamonaviy usullar vositasida tezlashtirishdir. Kompyutyerda modellashtirish texnologiyasini o‘zlashtirish kompyuter tizimlarini (vositachi qurilma sifatida) yaxshi bilishni va unda modellash texnologiyalarini ishlata olishni talab qiladi. Kompyutyerda dasturlash tillaridan foydalanish matematik modellashtirish usulida jiddiy burilish yasadi. XX asr oxirlarida yaratilgan yuqori quvvatli Pentium prosessorli kompyuterlarda o‘rganilayotgan jarayonlar modellarining turli ko‘rinishlarini (grafik, diagramma, animatsiya, multiplikatsiya va h.k.) kompyuter ekranida hosil qilish mumkin. Ekrandagi modelni (masalan, rasm eskizini) turli xil darajada (tekislik, fazo o‘yicha) harakatga keltirish imkoniyatlari mavjud. Ekranda hosil qilingan modelni kompyuter xotirasida fayl ko‘rinishida saqlash va undan bir necha marta foydalanish mumkin. Umuman olganda, kompyuterli modellashtirishning metodologiyasida quyidagi yo‘nalishlarni ajratish mumkin: 1. Geometrik yo‘nalishdagi tajribalarni tashkillashtirish koordinatalar tekisligida amalga oshiriladi. Kompyuter geometrik ob‘yektlarning hossalarini o‘rganish va 12 matematik farazlarni tekshirishda modellarni qurish va ularni tadqiq etish vositasi sifatida ishlatiladi.2. Ikkinchi yo‘nalish turli xil harakatlarni modellashtirish bilan bog‘liq. Kompyuter modellari orqali turli xil harakatli masalalarni yechish mumkin. Bu ro‘y beradigan jarayonlarning mohiyatini chuqurroq va kengroq his qilishga, olingan natijalarni haqiqiy baholash va kompyutyerda modellashtirish imkoniyatlari haqidagi tasavvurlarning kengayishiga olib keladi. 3. Uchinchi yo‘nalish - kompyuter ekranida funksiya grafiklarini modellashtirishkasbiy kompyuter tizimlarida keng qo‘llaniladi. Masalan, Logo dasturi funksiya grafiklari, tenglama va tenglamalar tizimini yechish va ularning natijalarini olish imkoniyatlarini beradi. Eng muhimi shundaki, kompyutyerda modellashtirish texnologiyasidan foydalanish haqiqiy anglashda, bilish jarayonini amalga oshirishda yangi bosqich rolini o‘ynaydi. Ma‘lumotlar modellari shakli qanday bo‘lishidan qat‘iy nazar quyidagi talablarni bajarishi kerak: 1. Soddalik. Ma‘lumotlar modeli kam sondagi bog‘lanishli tuzilish turlariga ega bo‘lishi lozim. 2. Yaqqollik. Ma‘lumotlar modeli vizual (ko‘zga ko‘rinadigan, tasvirlanadigan) bo‘lishi kerak. 3. Qismlarga bo‘linishi. Ma‘lumotlar modeli ma‘lumotlar omborida oddiy o‘rin almashtirish imkoniyatiga ega bo‘lishi lozim. 4. O‘rin almashtirish. Ma‘lumotlar modeli o‘ziga o‘xshash modellar bilan almashtirilish imkoniyatiga ega bo‘lishi kerak. 5. Erkinlik. Ma‘lumotlar modeli aniq bo‘lakchalarnigina o‘z ichiga olmasligi lozim. Yuqorida ko‘rsatilgan talablar ham yaratiladigan modellarning idealligini ta‘minlay olmaydi. Chunki modellashtirishda haqiqiy ob‘yektning ba‘zi bir muhim xususiyatlarigina ishtirok etadi holos. Atrofimizdagi dunyoni o‘rganish natijasida noaniq va to‘liq bo‘lmagan ma‘lumotlar olinishi mumkin. Lekin bu koinotga uchish, atom yadrosining sirini aniqlash, jamiyatning rivojlanish qonunlarini egallash va boshqalarga xalaqit etmaydi. Ular asosida o‘rganilayotgan hodisa va jarayonning modeli yaratiladi. Model ularning xususiyatlarini mumkin qadar to‘laroq akslantirishi zarur. Modelning taqribiylik xarakteri turli ko‘rinishda namoyon bo‘lishi mumkin. Masalan, tajriba o‘tkazish mobaynida foydalaniladigan asboblarning aniqligi olinayotgan natijaning aniqligi ta‘sir etadi. Modellashtirish-bilish ob‘yektlari (fizik hodisa va jarayonlar)ni ularning modellari yordamida tadqiq qilish mavjud predmet va hodisalarning modellarini yasash va o‘rganishdir. Modellash uslubidan hozirgi zamon fanida keng foydalanilmoqda. U ilmiy tadqiqot jarayonini yengillashtiradi, ba‘zi hollarda esa murakkab ob‘yektlarni o‘rganishning yagona vositasiga aylanadi. Mavhum ob‘yekt, olisda joylashgan ob‘yektlar, juda kichik hajmdagi ob‘yektlarni o‘rganishda modellashtirishning ahamiyati katta. Modellashtirish uslubidan fizika, astronomiya, biologiya, iqtisod fanlarida ob‘yektning faqat ma‘lum xususiyat va munosbatlarini aniqlashda ham foydalaniladi. Misol tariqasida qishloq ho‘jalik masalasiga matematik model tuzishni ko‘rib chiqamiz. Suyuq kristallar, suyuq kristall holat, mezomorf holat — moddalarning suyuqlik (oquvchanlik) xossalari hamda qattiq kristallarning baʼzi xossalari (anizotropiya) ga ega boʻlgan oraliq holati. Suyuq kristallar hosil qilgan moddalarning molekulalari tayoqcha yoki choʻziq plastinkasimon shaklda boʻladi. Termotrop va liotrop xillarga boʻlinadi. Termotrop Suyuq kristallar — maʼlum temperatura oraligʻida mezomorf holatda, undan past trada qattiq kristall, yuqori trada esa oddiy suyuklik holatida boʻladi. Masalan, iazoksianizol 118,27° da anizotrop boʻlib, suyuq kristallar hosil qiladi. 135,85° da esa u izotroplikni namoyon qilib, oddiy suyuqlikka aylanadi. Baʼzi moddalarning maxsus erituvchilardagi eritmasi liotrop Suyuq kristallar deyiladi.Suyuq kristallar molekulalarining tartiblanish darajasiga koʻra nematik ("azoksionizol, sintetik polipeptid eritmalari) va smektik (sovunning suvdagi eritmasi) Suyuq kristallar ga boʻlinadi. Nematik va smektik Suyuq kristallarning tashki koʻrinishini polyarizatsion mikroskop yordamida osongina ajratish mumkin. Nematik Suyuq kristallar ipsimon, smektik Suyuq kristallar konussimon, tayoqchasimon va bosqichli tuzil gan.Suyuq kristallarning xolesterik (xolesterinning propil efiri) xili ham mavjud boʻlib, uning molekulalari birbiriga parallel joylashgan uzunchoq plastinkasimon shaklda. Xolesterik Suyuq kristallar organik suyukdiklar va qattiq kristallarning optik faolligidan bir necha marta yuqori boʻlgan optik faollikkya ega. Baʼzi termotrop Suyuq kristallar 2 mezomorf holatda boʻlishi mumkin (qarang Polimorfizm ). Bunda strukturaviy oʻtishlar quyidagicha: qattiq^smektik— jematik—>amorfsuyuq kristall faza sxemasi boʻyicha boradi va 1 tartibli faza oʻtish sodir boʻladi. Suyuq kristallar elastik, magnit va optik anizotroplik, yopishqoqlik, elektr oʻtkazuvchanlik va boshqa xossalarga ega. Suyuq kristallar 1888-yilda F. Reynitser va O. Lemanlar tomonidan kashf etilgan. 1888 yilda avstraliyalik olim Leni FM ikki g'alaba nuqtasiga ega g'alati bir organik birikma sintezladi. Qattiq kristall 145 ga qadar qizdirilsa, u suyuqlikda eriydi, ammo u faqat bulutli va barcha toza moddalar eritilganida shaffof edi. Agar u 175 darajaga qadar qizdirilsa, yana eriydi va aniq va shaffof suyuqlikka aylanadi. Keyinchalik nemis fizik Lehman kristall deb nomlangan "o'rta zonada" loyqali suyuqlikni chaqirdi. U hech qanday otga o'xshamaydi, na eshakka o'xshaydi, shuning uchun uni organik xachir deb atashadi. Suyuq kristall kashf etilganligi sababli, odamlar 1968 yilgacha qanday ishlatilishini bilmaydilar, odamlar uni elektron sanoatida material sifatida qabul qilishdi. Kichkina molekulyar og'irlikdagi moddalarning ko'pchiligi holati harorat - qattiq (suyuq), suyuq (suyuq) va gaz (gaz) ortishi bilan uchta modda holatini ko'rsatadi. Ammo molekulyar og'irligi katta bo'lsa va struktura maxsus bo'lsa, uning holatining o'zgarishi juda oddiy emas. 1888-yilda, Reinizer xolesterin benzonatining kristallanishiga qizdirilgach, 145,5 darajaga qizdirilgach, 178,5 darajaga qizdirilganda butunlay shaffof suyuqlikka aylangan bulutli oq yopishqoq suyuqlikka aylandi. Lehman kristalli va shaffof suyuqlik (faza) o'rtasidagi davlatning qattiqqa xos bo'lgan optik anizotropiyaga ega ekanligini aniqladi, shuning uchun u suyuq kristal (suyuq kristall) deb ataladi. Suyuq kristall (suyuq kristall) suyuqlikning o'ziga xos akışkanlığına (akışkanlık) ega ekanligini va ayni paytda optik anizotropi (optik anizotropi) bo'lganligini ko'rsatuvchi suyuq va kristalli sintetik so'zdir. U qattiq va suyuqlik o'rtasida mavjud bo'lganligi sababli, uni mesofaz (mesofaz) deb atash to'g'ri bo'ladi, lekin ko'proq suyuq kristal deb ataladi. Tadqiqotlarning chuqurlashuvi natijasida suyuq kristalli faza ko'p moddalarda topilgan va suyuq kristalli fazaga ega bo'lgan molekulalar strip yoki diskga o'xshash molekulyar tuzilmalarga ega bo'lgan (1-rasmga qarang). Shakl 2da ko'rsatilgandek, suyuq kristalli fazaga ega bo'lgan molekulalar ma'lum bir past haroratda ma'lum qoidalarga muvofiq kristalli tuzilmalardir, ammo ma'lum bir erish nuqtasi (erish nuqtasi) ga kelganida, massa markazi erkin harakatlanadi, bar anisotrop suyuqlikning ma'lum bir tarqatish holatini hosil qiladi (anizotropik suyuqlik). Bu suyuq kristalli faza. Bu suyuq kristalllarning optik anizotropiyaga ega bo'lishining asosiy sababidir. Agar harorat bu vaqtda ko'tarilsa (tozalash nuqtasi), molekulalar faqat massa markazi emas, balki Ip yo'nalishi ham erkin taqsimlanadi va izotropik suyuqlikka (izotropik suyuqlikka) aylanadi. Suyuq kristalli fazaga ega bo'lgan molekulalar, avval aytib o'tilgandek, suyuq kristalli fazaga suyuq kristalli (lyotropi) suyuq kristalli (lyotropi) bo'linishi mumkin bo'lgan shakldagi yoki muayyan moddaning afinitesiga ko'ra turli bosqichlarni tashkil qilishi mumkin. kristalli faza (termotropik kristall) ma'lum bir harorat mintaqasida suyuq kristalli faza va muayyan hal qiluvchi (lyotropi) C suyuq kristalining ma'lum bir qismini o'z ichiga oladi. Ekranda ishlatiladigan suyuq kristallarning ko'pi termotropik suyuq kristallar bo'lib, lyotropik suyuq kristallar asosan biofilmlarda topilgan. Issiqlik suyuq kristallari nematik (xematika), xolesterik (xolesterik) va yaqin kristal (smektik) pozitsiyasiga (pozitsial tartib) va yo'nalish tartibiga ko'ra (orientatsiya tartibida) bo'linishi mumkin. Nematik suyuq kristalli (nematik suyuq kristall) Nematik suyuq kristalli molekulalarning massa markazi suyuqlik kabi harakatlanayotganda, molekula uzun eksa yo'nalishi (uzun molekulyar oqi) bir vaqtning issiqlik burilishiga ega, biroq u aniq bir yo'nalishda yo'naltirilgan. Ushbu yo'nalishda ko'rsatilgan birlik vektorga (boshqaruvchi) deyiladi. Nematik suyuq kristallarning deyarli barcha makroskobik jismoniy sobitlari tekshirgichning rotatsion simmetriyasiga qarab bitta eksa (bir tomonlama). Bundan tashqari, nazorat qiluvchi simmetriyadan oldin va keyin (pastga simmetriyadan boshlanadi), shuning uchun uning tarkibidagi molekulalar polarit (qutbli) bo'lsa ham, nematik suyuq kristalllarda polarit yo'q. Uning strukturasi uch xil suyuq kristallarda eng oddiy bo'lsa-da, monitorlarda ishlatiladigan suyuq kristallarning ko'pchiligi nematik suyuq kristallardir. Bu asosan N. kristalli suyuq kristalning yaqinidagi 3-rasm. Suyultirilgan kristal fazasining turi xolesterin suyuqlik kristallari Xolesterik suyuq kristallari nematik suyuq kristallarga o'xshash, ammo ularning turli vertikal o'qi bo'ylab aylanadigan vertolyot strukturasi mavjud. Spiral eksa perpendikulyar tekislikda nematik suyuq kristaldan farq yo'q. Xolesterin suyuqlik kristalli fazasining tarkibiy molekulalari mutlaq simmetriyasiz chiral chiral markazga (chiral) ega va nematik suyuq kristallarda shoh radikallari bo'lgan molekulalar ham ko'rsatilishi mumkin. Shuning uchun, xolesterin suyuqlik kristallari ham chiral nematik deb ataladi. Bundan tashqari, xirol molekulalarining o'ziga xosligiga ko'ra, spirali o'qning aylanish yo'nalishi aniqlanadi. Shuning uchun xolesterin suyuqlik kristallari muntazam tartibda yo'nalish tartibida va spiral eksa bo'yicha kengaytirilib tartibga solinadi. Xolesterin suyuqlik kristalli spiral tuzilishining 1 - davr uzunligi nematik suyuqlik kristallagi bosh simmetriyasiga teng bo'lgani kabi, daraja (maydon) deb ataladi, shuning uchun amaldagi davr faqat yarim daraja. Odatda CLC yoki ChLC tomonidan ifoda etiladi. N * shuningdek xolesterin suyuq kristallarining ma'nosini ifodalash uchun ham ishlatiladi. Asterisk chiralni ifodalaydi. Download 0.66 Mb. Do'stlaringiz bilan baham: |
1 2
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling