Funksiya hosilasining ta’rifi
Download 29.28 Kb.
|
Funksiya hosilasining ta’rifi-fayllar.org
- Bu sahifa navigatsiya:
- 3. Leybnits formulasi tatbiqlari.
2. Leybnits formulasi.
Agar u(x) va v(x) funksiyalar n-tartibli hosilalarga ega bo‘lsa, u holda bu ikki funksiya ko‘paytmasining n -tartibli hosilasi uchun + (9)
Isboti. Matematik induksiya usulini qo‘llaymiz. Ma’lumki, (uv)’=u’v+uv’. Bu esa n=1 bo‘lganda (9) formulaning to‘g‘riligini ko‘rsatadi. Shuning uchun (9) formulani ixtiyoriy n uchun o‘rinli deb olib, uning n+1 uchun ham to‘g‘riligini ko‘rsatamiz. (9) ni differensiyalaymiz: + (10)
=
Demak, (9) formula n+1 uchun ham o‘rinli ekan. Isbot etilgan (9) formula Leybnits formulasi deb ataladi. 3. Leybnits formulasi tatbiqlari. Misol. y=x3ex ning 20-tartibli hosilasi topilsin. Yechish. u=ex va v=x3 deb olsak, Leybnits formulasiga ko‘ra bo‘ladi. (x3)’=3x2, (x3)’’=6x, (x3)’’’=6, (x3)(4)=0 tengliklarni va y=x3 funksiyaning hamma keyingi hosilalarining 0 ga tengligini, shuningdek n uchun (ex)(n)=ex ekanligini e’tiborga olsak, tenglik hosil bo‘ladi. Endi koeffitsientlarni hisoblaymiz: Demak,
Funksiyaning o`zgarish xarakteri bilan uning hosilasi orasida bog`-liqlik mavjud bo`lib, hosila yordamida fiinksiya tabiatiga mansub bir qator xossalarni aniqlash mumkin. V= [a;b] oraliqda у = f(x) fiinksiya berilgan bo`lib, har qanday shu oraliqdan tanlanadigan ikki x1 va x2 sonlar uchun x1 < x2 munosabatdan f(x1)2) (f(x1)>f(x2)) tengsizlik kelib chiqsa, u holda у = f(x) funksiya V oraliqda o`suvchi (kamayuvchi) deyilishini eslatib o`tamiz (3-§ ga qarang).
Download 29.28 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling