3. ELEMENTAR FUNKTSIYaLARNI DARAJALI QATORLARGA YoYISh
1.f(x) =ex funktsiyani x darajasi bo`yicha Makloren qatoriga yoyish.
Yechilishi: ex ning hosilalarini ketma–ket topamiz va x=0 nuqtada ularning qiy-matlarini aniqlaymiz:
, , , ,…
x=0 bo`lganda:
, , , ,…
Bu qiymatlarni Makloren qatoriga qo`ysak, quyidagi qator hosil bo`ladi:
2. f(x) = sinx funktsiyani Makloren qatoriga yoyish.
Yechilishi: Berilgan funktsiyaning hosilalarini topamiz:
x =0 nuqtada ularning qiymatlarini topamiz va Makloren qatoriga qo`yamiz:
3.f(x) = cos x funktsiyaning yoyilmasi.
Yechilishi: f(x) = cos x funktsiyaning hosilalarini topamiz:
…
x = 0 nuqtada topilgan hosilalarning qiymatlarini aniqlaymiz:
Topilgan qiymatlarni Makloren qatoriga qo`yamiz:
4.f(x) = (1+x)k – Nyuton binomining yoyilmasi.
Yechilishi: Berilgan Nyuton binomidan ketma – ket hosilalar olamiz:
,…
x = 0 nuqtada qiymatlarini topamiz:
Topilganlarni Makloren qatoriga qo`yamiz:
5. ko`phadni (x - 1) ning darajasi bo`yicha qatorga yoyish.
Yechilishi: Berilgan funktsiyaning hosilalarini topamiz:
x=1 nuqtada ko`phad va uning hosilalari qiymatlarini topamiz:
, , , , ,
Topilgan qiymatlarni Teylor qatoriga qo`yamiz:
6. funktsiyani x = 0 nuqtada Teylor qatoriga yoyish.
Yechilishi: Funktsiyaning hosilalarini topamiz:
, ,
Qiymatlarini topib, Teylor qatoriga qo`yamiz:
, , , ,…,
U holda,
7. ko`phadni x–2 ning o`suvchi darajasi tartibida Teylor qatoriga yoying.
Yechilishi: Funktsiyaning hosilalarini topamiz:
, ,
Hosilalarning son qiymatini topish uchun x ning o`rniga 2 ni qo`yamiz, ya`ni x=2:
, , , .
Bu qiymatlarni Teylor qatoriga qo`yamiz:
yoki
Do'stlaringiz bilan baham: |