High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ


Fig. 6 | Electronic structure of monolayer Bi-2212 in the Mott insulating


Download 5.82 Mb.
Pdf ko'rish
bet14/27
Sana05.11.2023
Hajmi5.82 Mb.
#1749152
1   ...   10   11   12   13   14   15   16   17   ...   27
Bog'liq
nature-s41586-019-1718-x

Fig. 6 | Electronic structure of monolayer Bi-2212 in the Mott insulating 
regime. a, Spatially averaged differential conductance spectra of monolayer
Bi-2212 obtained between vacuum annealing cycles. The annealing temperature 
is marked on each curve. The spectrum labelled ‘Initial’ was recorded before 
annealing. The as-exfoliated monolayer (obtained from OD55 crystal) was 
initially over-doped. The annealing cycles progressively lower its doping level 
and eventually make the specimen extremely under-doped. b, Representative 
tunnelling spectra of the extremely under-doped monolayer in a. Inset: 
tunnelling conductance maps recorded at tunnelling biases of 0.2 V (upper 
panel) and 1.6 V (lower panel). Crosses mark the positions where the spectra are 
taken. Spectra are shifted vertically for clarity.


8 | Nature | www.nature.com
Article
indicate that the dimensionality effect, if it exists at all, does not
play an important role in the transition from Mott to pseudogap phase 
in Bi-2212.
Online content
Any methods, additional references, Nature Research reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-019-1718-x.
1. 
Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or 
two-dimensional isotropic Heisenberg models. Phys. Rev. Lett17, 1133–1136 (1966).
2. 
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in
two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).
3. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater2
16094 (2017).
4. Uchihashi, T. Two-dimensional superconductors with atomic-scale thickness. Supercond. 
Sci. Technol30, 013002 (2017).
5. 
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to 
high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
6. Chakravarty, S., Sudbø, A., Anderson, P. W. & Strong, S. Interlayer tunneling and gap 
anisotropy in high-temperature superconductors. Science 261, 337–340 (1993).
7. 
Anderson, P. W. Interlayer tunneling mechanism for high-T
c
superconductivity: 
comparison with c axis infrared experiments. Science 268, 1154–1155 (1995).
8. 
Leggett, A. J. WHERE is the energy saved in cuprate superconductivity? J. Phys. Chem. 
Solids 59, 1729–1732 (1998).
9. 
Kresin, V. Z. & Morawitz, H. Layer plasmons and high-T
c
superconductivity. Phys. Rev. B 37
7854–7857 (1988).
10. Lee, P. A. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature 
superconductivity. Rev. Mod. Phys78, 17–85 (2006).
11. Scalapino, D. J. A common thread: the pairing interaction for unconventional 
superconductors. Rev. Mod. Phys84, 1383–1417 (2012).
12. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in 
high temperature superconductors. Rev. Mod. Phys87, 457–482 (2015).
13. Rajasekaran, S. et al. Probing optically silent superfluid stripes in cuprates. Science 359
575–579 (2018).
14. Gerber, S. et al. Three-dimensional charge density wave order in YBa
2
Cu
3
O
6.67
at high 
magnetic fields. Science 350, 949–952 (2015).
15. Bluschke, M. et al. Stabilization of three-dimensional charge order in YBa
2
Cu
3
O
6+x
via 
epitaxial growth. Nat. Commun9, 2978 (2018).
16. Hepting, M. et al. Three-dimensional collective charge excitations in electron-doped 
copper oxide superconductors. Nature 563, 374 (2018).
17. Schneider, T. Dimensional crossover in cuprate superconductors. Z. Phys. B Condens. 
Matter 85, 187–195 (1991).
18. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling 
spectroscopy of high-temperature superconductors. Rev. Mod. Phys79, 353–419 (2007).
19. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the 
cuprate superconductors. Rev. Mod. Phys75, 473–541 (2003).
20. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an 
experimental survey. Rep. Prog. Phys62, 61–122 (1999).
21. Schmidt, A. R. et al. Electronic structure of the cuprate superconducting and pseudogap 
phases from spectroscopic imaging STM. New J. Phys13, 065014 (2011).
22. McElroy, K. et al. Atomic-scale sources and mechanism of nanoscale electronic disorder 
in Bi
2
Sr
2
CaCu
2
O
8+δ
Science 309, 1048–1052 (2005).
23. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in 
Bi
2
Sr
2
CaCu
2
O
8+δ
Nature 454, 1072–1078 (2008).
24. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle 
states in superconducting Bi
2
Sr
2
CaCu
2
O
8+δ
Nature 422, 592–596 (2003).
25. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi
2
Sr
2
CaCu
2
O
8+δ
Science 297
1148–1151 (2002).
26. Hanaguri, T. et al. Quasiparticle interference and superconducting gap in 
Ca
2−x
Na
x
CuO
2
Cl
2
Nat. Phys3, 865–871 (2007).
27. Lang, K. M. et al. Imaging the granular structure of high-T
c
superconductivity in 
underdoped Bi
2
Sr
2
CaCu
2
O
8+δ
Nature 415, 412 (2002).
28. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped 
Ca
2−x
Na
x
CuO
2
Cl
2
Nature 430, 1001–1005 (2004).
29. daSilva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-
temperature superconductivity in cuprates. Science 343, 393–396 (2014).
30. Comin, R. et al. Charge order driven by Fermi-arc instability in Bi
2
Sr
2−x
La
x
CuO
6+δ
Science 
343, 390–392 (2014).
31. Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi
2
Sr
2
CaCu
2
O
8+x
Nature 

Download 5.82 Mb.

Do'stlaringiz bilan baham:
1   ...   10   11   12   13   14   15   16   17   ...   27




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling