Hyperbolic equation, nonlocal characteristic velocity, stability, explicit difference scheme
Download 15.6 Kb.
|
Keywords
Investigation of exponential stability of numerical solution of hyperbolic equation with negative nonlocal characteristic velocity and measurement error Алоев Р.Д., aloevr@mail.ru Национальный университет Узбекистана имени Мирзо Улугбека, 100174, Узбекистан, Ташкент, ул. Университетская, 4; Алимова В.Б alimova_v@nuu.uz Национальный университет Узбекистана имени Мирзо Улугбека, 100174, Узбекистан, Ташкент, ул. Университетская, 4; Keywords. Hyperbolic equation, nonlocal characteristic velocity, stability, explicit difference scheme. Abstract In this paper, we investigate the problem of stabilization of the equilibrium state for a hyperbolic equation with negative nonlocal characteristic velocity and measurement error. The formulation of a mixed control problem is given. The definition of the weak solution, exponential stability of the equilibrium of the mixed problem and the Lyapunov function is given. A theorem on the exponential stability of the equilibrium of a mixed problem is proved. Stability in the -norm with respect to a discrete disturbance of the equilibrium state of the initial boundary difference problem is determined. A discrete Lyapunov function is constructed and a theorem of stability of the equilibrium state of the initial-boundary difference problem in the -norm with respect to a discrete perturbation is proved. Download 15.6 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling