I-bob. Funsiya tushunchasi


Download 317.13 Kb.
bet11/13
Sana09.05.2023
Hajmi317.13 Kb.
#1449660
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
Abdurashidova02.21Funksiya

Yechish.
ya’ni va

1

Y




1

0






-1


2-shakl.
Dеmak, birinchi tur uzilish nuqtasi.
Ikkinchi tur uzilish nuqtasi. Agar nuqtada bir tomonlama limitlardan kamida biri mavjud emas yoki chеksizlikka tеng boʻlsa, nuqta ikkinchi tur uzilish nuqtasi dеyiladi.
Masalan, funksiya nuqtada mavjud emas(5-shakl).



y






1

0


3-shakl.
Dеmak, nuqta ikkinchi tur uzilish nuqtasi.


tayin limitga ega emas, dеmak, nuqta ikkinchi tur uzilish nuqtasi.
2.3. Bir va ko`p o`zgaruvchili funksiya uzluksizligi
1. Bir va ko`p o`zgaruvchili funksiyaning nuqtadagi uzluksizligi
y = (M) = (x1; x2; …; xn) funksiya V  Rn to`plamda aniqlangan bo`lib, nuqta V to`plamning quyuqlanish nuqtasi va Mє V bo`lsin.
Funksiyaning nuqtada uzluksizligini, funksiya limitini ta`riflagan kabi, ikki teng kuchli ta`riflardan biri orqali aniqlash mumkin.
Har bir hadi V to`plamga tegishli va uning M0 quyuqlanish nuqtasiga yaqinlashuvchi har qanday M1, M2, …, Mk, … nuqtalar ketma-ketligi uchun, mos funksiya qiymatlari (M1), (M2), …, (Mk), … sonli ketma-ketligi (M0) songa intilsa, u holda (M) funksiya M0 nuqtada uzluksiz deyiladi.
Har qanday oldindan tayinlanadigan ε > 0 son uchun M0 nuqtaning shunday bir δ atrofi Sδ(M0) ni ko`rsatish mumkin bo`lsaki, barcha M є Sδ(M0) ∩ V nuqtalar uchun |(M) - (M0) | < ε tengsizlik bajarilsa, (M) funksiya M0 nuqtada uzluksiz deyiladi.
y = (M) funksiyaning M0 nuqtada uzluksizligi ning mavjudligini va uning funksiyaning M0 nuqtada erishadigan qiymati (M0) ga tengligini anglatadi, ya`ni .
shart shartga teng kuchli ekanligini e`tiborga olsak, argumentlar orttirmalari deb ataladigan , , …, almashtirishlar va ularga mos funksiyaning M0 nuqtadagi orttirmasi deyiladigan (M) - (M0) = Δ(M0) almashtirish kiritsak, shartlar

ko`rinishda yoziladi. Bu esa, funksiyaning nuqtada uzluksizligi, shu nuqtada barcha argumentlarning cheksiz kichik orttirmalariga funksiya-ning ham cheksiz kichik orttirmasi mos kelishini anglatadi.
Xususiy holda, yuqorida keltirilgan ta`riflarni bir o`zgaruvchili funksiya uchun bayon qilishda M ni x bilan almashtirish kifoya qiladi.
Masalan:
1) y = cos x funksiya har bir xє R1 nuqtada uzluksiz, chunki


2) y = a1x+ a2x2 + … +an xn chiziqli funksiya har bir M(x1; x2; …; xn) є Rn nuqtada uzluksiz va hokazo.

Download 317.13 Kb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling