Ilm-fan muammolari yosh tadqiqotchilar talqinida
“Ilm-fan muammolari yosh tadqiqotchilar talqinida”
Download 4.85 Mb. Pdf ko'rish
|
“Ilm fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9
- Bu sahifa navigatsiya:
- “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi
- Uralov Akmal Shakar ugli Tashkent State transport University Annotation
“Ilm-fan muammolari yosh tadqiqotchilar talqinida”
mavzusidagi 9-sonli respublika ilmiy konferensiyasi 8 PARAMETRIK KO‘RINISHDA BERILGAN EGRI CHIZIQ UZUNLIGINI HISOBLASH Amirov Javoxir Alisher o‘g‘li Guliston davlat universiteti magistranti Annotatsiya: Ushbu maqolada aniq integral yordamida parametrik ko‘rinishda berilgan egri chiziq uzunligini hisoblash keltirilgan. Kalit sozlar: parameter, funksiya, Lagranj teoremasi, yoy uzunligi. Faraz qilaylik, B A ( egri chiziq ushbu ( ) = = t t y t x ) ( ), ( tenglamalar sistemasi bilan berilgan bo‘lib, 1) ; ] , [ ) ( , ] , [ ) ( C t C t 2) 2 1 2 1 , ] , [ , t t t t uchun shartlarning bajarilishi bilan birga ) ( ), ( t t funksiyalari ] , [ da uzluksiz ) (t hamda ) (t hosilalarga ega bo‘lsin. ] , [ segmentning ixtiyoriy ) ... ( ,..., , 1 0 1 0 = = = n n t t t t t t P bo‘laklashini olib, ularga mos B A ( yoyiniig ) , ( k k k k y x A A = )) ( , ) ( ( k k k k t y t x = = nuqtalarini bir-biri bilan to‘g‘ri chiziq kesmasi yordamida birlashtirishdan hosil bo‘lgan l siniq chiziq perimetri − = + + − + − = 1 0 2 1 2 1 ))] ( ) ( [ )] ( ) ( [ ) ( n k k k k k t t t t l ni qaraymiz. Lagranj teoremasidan foydalanib topamiz: ( ) k k k k n k k k n k k k k k k k t t t t t t t t l − = + = = − + − = + − = − = + + 1 1 0 2 2 1 0 2 1 2 2 1 2 ) ( ) ( ) ( ) ( ) ( ) ( ) ( “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi 9 bunda . ] , [ . ] , [ 1 1 + + k k k k k k t t t t Keyingi tenglikni quyidagicha yozib olamiz: + + = − = k n k k k t l 1 0 2 2 ) ( ) ( ) ( k k k n k k k t + − + + − = ] ) ( ) ( ) ( ) ( [ 2 2 1 0 2 2 (2) bunda, ]. , [ 1 + k k k t t Madomiki, ] , [ ) ( ) ( 2 2 C t t + ekan unda ] , [ ) ( ) ( 2 2 R t t + bo‘lib, − = → + = + 1 0 2 2 2 2 0 ) ( ) ( ) ( ) ( lim n k k k k dt t t t p (3) bo‘ladi. Ixtiyoriy d c b a , , , haqiqiy sonlar uchun ushbu d b c a d c b a − + − + − + 2 2 2 2 tengsizlik o‘rinli bo‘ladi [1]. Haqiqatan ham, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) ( ) . a c a c b d a b c d a c a b c d a b c d b d b d a c b d a b c d + − + − + − + = − + + + + + + + + − − + − + + + Bu tengsizlikdan foydalanib topamiz: + − + − = k k k n k k k t ] ) ( ) ( ) ( ) ( [ 2 2 1 0 2 2 “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi 10 − = − = − + − 1 0 1 0 ) ( ) ( ) ( ) ( n k n k k k k k k k t t − = − = + 1 0 1 0 . ) ( ) ( n k n k k k t t ] , [ ) ( , ] , [ ) ( R t R t bo‘lganligi sababli 0 ] ) ( ) ( ) ( ) ( [ lim 2 2 1 0 2 2 0 = + − − + − = → k k k n k k k t p (4) bo‘ladi [2]. (3) va (4) munosabatlarni e’tiborga olib, 0 → p da (*) tenglikda limitga o‘tsak, u holda B A ( yoyining uzunligi uchun dt t t B A + = ) ( ) ( ) ( 2 2 ( (5) bo‘lishi kelib chiqadi. Bu formula yordamida yoy uzunligi hisoblanadi. Misol. Ushbu ) 0 ( ) cos 1 ( ) sin ( − = − = t t a y t t a x tenglamalar sistemasi bilan berilgan B A ( egri chiziqning (tsikloidaning) uzunligi topilsin. Yechish: Ravshanki, 2 2 2 2 2 2 2 2 2 ( ) (1 cos ), ( ) sin , ( ) ( ) (1 cos ) sin 2(1 cos ), ( ) ( ) 2(1 cos ) x t a t y t a t x t y t a t a t a t x t y t a t = − = + = − + = − + = − bo‘ladi. (5) formulaga ko‘ra izlanayotgan egri chiziqning uzunligi a t a dt t a dt t a B A 8 ) 2 (cos 4 2 sin 2 ) cos 1 ( 2 ) ( 2 0 2 0 2 0 = − = = − = ( bo‘ladi. “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi 11 Foydalanilgan adabiyotlar: 1. Sh.A.Alimov “Matematik analiz”, Тоshkent., 2011. 2. A.Gʻoziyev, I.Isroilov, M.Yaxshiboyev “Matematik analizdan misol va masalalar”, Тоshkent., “Yangi asr avlodi”– 2006. “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi 12 THE FUNCTION OF THE RAILS. THE PROCEDURE FOR RE-USE OF RAILS USED FOR A LONG YEAR Shermatov Diyorbek Akmaljon ugli Tashkent State transport University Uralov Akmal Shakar ugli Tashkent State transport University Annotation: This article lists the task to be put on the rail and the procedure for reusing previously used rails. Keywords: Rail functions, grouping according to the years of use of the rails. The purpose of rails is to create surfaces with the lowest resistance for rolling wheels of rolling stock, directly perceive and elastically transfer the impact of wheels on supports (sleepers, bars) and guide the wheels of rolling stock. In addition, at sections with autoblocking (automatic system of train traffic control, in which the run between stations is divided into one or more block sections, usually from 1 to 3 km long. At the beginning of each block section there is an automatically operating through traffic light), railroad strands serve as conductors of signal current, and on electrified sections - reverse traction current. [1]. Rails must be sufficiently strong, durable, reliable in operation, hard and simultaneously ductile (non-fragile), as they take shock-dynamic loads from the wheels of rolling stock. Weight of rails, cross-section profiles, chemical composition of rail steel and manufacturing technology are interrelated and together determine the operational qualities of the rail as an element of the track superstructure. [1]. The possibility of reuse of old-age rails removed from the track is determined before their removal from the track. The suitability groups of old-age rails to determine the possibility and scope of reuse in the track of old-age rails and rails strands removed from the track in all types of repairs, continuous or single replacement and ongoing maintenance. Rails suitability group is established at the |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling