Information Review Measurement of Text Similarity: a survey Jiapeng Wang and Yihong Dong


, 11, x FOR PEER REVIEW  8 of 17  Figure 2


Download 2.35 Mb.
Pdf ko'rish
bet4/14
Sana13.09.2023
Hajmi2.35 Mb.
#1677471
1   2   3   4   5   6   7   8   9   ...   14
Bog'liq
information-11-00421-v2

Information 202011, x FOR PEER REVIEW 
8 of 17 
Figure 2. Word2vec’s model architectures. The continuous bag of words (CBOW) architecture 
predicts the current word based on the context, and the skip-gram predicts surrounding words given 
the current word [34]. 
• 
Glove 
Glove is a word representation tool based on global word frequency statistics, which explains 
the semantic information of words by modeling the contextual relationship of words. Its core idea is 
that words with similar meanings often appear in similar contexts [35]. 
• 
BERT 
BERT’s full name is bidirectional encoder representation from transformers, because decoder is 
unable to capture the directional encoder representation from transformers. The main innovation of 
the model is based on the pre-train approach, which covers masked language model and next 
sentence prediction, which capture expression and sentence-level representation, respectively [36]. 
However, BERT will be complicated to obtain interactive computing when it is used, so it generally 
not used as a way of computing similarity text when facing downstream tasks. BERT’s model 
architectures are described in Figure 3. 
Figure 3. Figure from understanding>. BERT’s (bidirectional encoder representation from transformers) model 
architectures. BERT uses a bidirectional transformer. BERT’s representations are jointly conditioned 
on both the left and right context in all layers [36]. 
Figure 2.
Word2vec’s model architectures. The continuous bag of words (CBOW) architecture predicts
the current word based on the context, and the skip-gram predicts surrounding words given the current
word [
34
].

Glove
Glove is a word representation tool based on global word frequency statistics, which explains the
semantic information of words by modeling the contextual relationship of words. Its core idea is that
words with similar meanings often appear in similar contexts [
35
].

BERT
BERT’s full name is bidirectional encoder representation from transformers, because decoder is
unable to capture the directional encoder representation from transformers. The main innovation of
the model is based on the pre-train approach, which covers masked language model and next sentence
prediction, which capture expression and sentence-level representation, respectively [
36
]. However,
BERT will be complicated to obtain interactive computing when it is used, so it generally not used as
a way of computing similarity text when facing downstream tasks. BERT’s model architectures are
described in Figure
3
.
Information 202011, x FOR PEER REVIEW 
8 of 17 

Download 2.35 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling