International conference on bioinformatics of genome regulation
Download 3.91 Kb. Pdf ko'rish
|
- Bu sahifa navigatsiya:
- Author index A
Key words: wheat leaf, trichome patterning, cell mechanics, symplastic growth, L-systems, computer simulation Motivation and Aim: Trichome patterning in wheat leaves serves as a model system to understand mechanisms of pattern formation on growing plant tissue. The question about the coordination of cell growth in plant tissue remains open up to date. In vertex- based plant tissue models an autonomous cell growth is usually assumed and general- ized potentials are used for describing the changes in the tissue geometry. Meanwhile, the biomechanics is considered as an important factor of the morphogenesis of tissues and even organs. We consider this issue in the investigation of changes in the cellular structure of wheat leaf epidermis during growth. The tissue structure change occurs due to activity of growth zones containing regions of dividing and differentiating cells. The epidermis of wheat leaf is established by parallel files of cells originating from the leaf base, where specialized cells, trichomes, are formed in separate files. The aim of our work was to develop a mechanical cell-based model for growth of linear leaf blade and explore the mechanism of trichomes pattern formation. Methods and Algorithms: A mathematical model based on the extension of L-systems approach and its implementation for computational simulation was proposed. We as- sumed a unidirectional growing cell ensemble starting from a meristem-like layer of generative cells and then generating parallel cell rows from every cell of the initial layer. We considered the growth zone of the leaf included division and elongation zones; in ad- dition the division zone included a zone of asymmetric divisions where trichomes were formed. We applied a modification of Ortega’s augmented growth equation [1] to the description of plant cell growth mechanics. Results of computer simulation demonstrate that the proposed model can describe (i) the experimental cells’ lengths distribution along the wheat leaf (data from [2]), and (ii) the experimental trichome spacing pattern in separate cell files. Acknowledgements: This work was supported by the RSF according to the research project № 14-14-00734. References: 1. Ortega, J.K. (2010) Plant cell growth in tissue, Plant Physiology 154(3):244-1253. 2. Beemster, G. T., Masle, J., Williamson, R. E., & Farquhar, G. D. (1996). Effects of soil resistance to root penetration on leaf expansion in wheat (Triticum aestivum L.): kinematic analysis of leaf elonga- tion, Journal of Experimental Botany, 47(11): 1663-1678. 354 THE TENTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY AN IMAGEJ PLUGIN FOR DETECTION OF WHEAT LEAF EPIDERMIS CELLULAR STRUCTURE FROM CONFOCAL LASER SCANNING MICROSCOPY U.S. Zubairova 1 *, P.Yu. Verman 2 and A.V. Doroshkov 1 1 Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia 2 Novosibirsk State University, Novosibirsk, Russia * Corresponding author: ulyanochka@bionet.nsc.ru Key words: wheat leaf, epidermal patterning, laser scanning microscopy, cell segmentation, ImageJ plugin Motivation and Aim: The epidermis of wheat leaf is a complex tissue consisting of differ- ent cell types forming a certain cell pattern from parallel cell rows. Microscopic images are widely used as an important source of information on the morphometric character- istics of the cells and the statistical characteristics of the cellular structure. 3D confocal images allow to determine characteristics of the cell structure of the leaf epidermis. However, to obtain large amounts of statistical data methods of high throughput com- puter based image segmentation are need. Our aim was to develop a plugin for detection of structural properties of leaf epidermis from 3D-images obtained from confocal laser scanning microscopy. These characteristics of the cell structure and patterns further will act as a basis for the development and verification of spatial models of plant tissues for- mation mechanisms accounting for structural features of monocot leaves. Methods and Algorithms: Methods of fluorescent staining and laser scanning micros- copy were used to obtain 3D images for visualizing the cell walls and cell nucleus in two different color channels. Each image contains information about the structure of a large fragment of wheat leaf epidermis and is composed of several frames which represent the series of a single lsm scans. The plugin “LSM_Worker” allows one (i) to merge frames into a single image, (ii) to improve the image quality by removing offsets and noise, (iii) to segment the cells and nucleus for each cannel, respectively and (iv) to compare the information from both channels and generate statistical characteristics of cell and nucleus volumes. Results and Conclusion: The plugin was used for obtaining statistical characteristics of the cellular pattern of leaf epidermis of several varieties of bread wheat characterized by different morphological features of epidermal cells. Obtained data provide a material for formulation hypotheses and development of models of variety leaf growth mechanisms. Availability: The plugin is available from the authors upon request. Acknowledgements: The reported study was funded by RFBR according to the research project № 16-34-00968. 355 THE TENTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY ALTORFEV: A NOVEL TOOL FOR PREDCITION OF ALTERNATIVE ORFS BASED ON THE LINEAR SCANNING MODEL B.S. Zuraev 1 *, A.V. Kochetov 1, 2 , A.I. Klimenko, S.A. Lashin 1, 2 1 Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia 2 Novosibirsk State University, Novosibirsk, Russia * Corresponding author: bulatzuraev@gmail.com Key words: Cytoscape plugin; ortholog; paralog; metabolic pathway; gene regulatory network; evolution; phylostratigraphy; evolution Motivation and Aim: The ribo-seq and proteomics techniques have revealed a large num- ber of alternative ORFs (altORFs) within eukaryotic mRNAs. Some bioinformatics re- sources were developed to explore the available ribo-seq data to locate altORFs within mRNAs of interest (e.g., Ribotools, RiboGalaxy, GWIPS-viz). Indeed, knowledge on the full set of polypeptides encoded by a eukaryotic gene under study is essential for detailed investigation of its functions. However, published ribo-seq data are still very limited and conventional nucleotide sequence databanks do not provide information on the altORFs. In addition, the individual genetic variants may cause changes in mRNA coding potential: if a nucleotide sequence of mRNA under study is non-identical to the available ribo-seq- checked reference sequence, the positions of altORF(s) and their relative translation rates may differ. Thus, development of new tools for altORFs prediction remains quite actual. However, an accurate prediction of altORFs is very complicated because of a large number of various parameters influencing their recognition and translation efficiency. Methods and Algorithms: The altORFev is based on the linear scanning model of translation [1]. It also considers the leaky scanning and reinitiation mechanisms. In brief, 40S ribosomal subunits bind to 5’-end of mRNA and move linearly along mRNA until start AUG codon is found. The probability of AUG recognition depends on its nucleotide context: start codon in the optimal context is recognized by the majority of 40S ribosomal subunits. Thus, if AUG codon is located in the optimal context and its ORF is larger than 30 codons, this ORF is defined as “terminal” since the majority of incoming 40S ribosomal subunits can’t move beyond it. If AUG codon is located in a suboptimal context, some 40S ribosomal subunits will recognize it and initiate translation, whereas others skip it and may initiate translation downstream (leaky scanning). Finally, if AUG is located in the optimal context but the ORF size is small (lesser than 30 codons), the reinitiation is possible: in this case, some 40S ribosomal subunits after termination of translation of small ORF remain connected to mRNA and may continue movement in 3’-direction. During scanning they restore their initiation competence by acquiring the lacked eIFs and met-tRNAi and may initiate transla- tion further downstream. Results: We have implemented two versions of the altORFev: (1) web application (Java 1.8, Vaadin); (2) desktop application (Java 1.8, Swing). Conclusion: The altORFev may be used to get additional information on eukaryotic genes taking into consideration alternative coding abilities of their mRNAs. Availability: web-version: http://www-bionet.sscc.ru:7780/AUGWeb/, desktop version: upon the requests to the authors. Acknowledgements: The study is supported by the RSF 14-24-00123 grant. References: 1. Kozak M. (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene, 361:13–37. 356 THE TENTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY Author index A Aas P.A. 160 Abilmazhinova A. 114 Abramova T.O. 253 Aceyev N. 222 Adamski J. 321 Afanasyev A.A. 146 Afonnikov D.A. 57, 70, 77, 104, 135, 184, 185, 195, 196, 203, 206, 281, 324, 351 Afremova A.I. 161 Agoulnik A.I. 25 Agoulnik I.U. 25 Akberdin I.R. 119 Akhmetova A. 114 Akhmetova K.A. 26 Akilzhanova A. 114 Akushkina A.V. 135 Alekseev B.Y. 286 Alekseeva A.L. 27 Alemasov N.A. 28 Alemasova E.E. 29 Aleoshin V.V. 257 Alexandrov N. 314 Alexandrovich Yu.V. 253 Alexeeva G. 351 Alexeevski A.V. 40, 191 Algaer Y.A. 316 Alifirova V.M. 236 Amelio I. 30 Amosova Р.V. 46 Andreyeva E.N. 27 Andryushchenko V.A. 31 Anishchenko I. 100 Anisimov V.N. 32 Antonets D.V. 33, 34 Antonets K.S. 28, 208 Antonov I.V. 35 Antonov Ye.V. 253 Appella E. 89 Aquino G. 302 Arapidi G.P. 304 Arbeev K.G. 163 Arbeeva L. 163 Arbuzov I. 249 ArgГјelles B.O. 82 Arkova O.V. 278 Arshavsky K.V. 62 Arshinova T.V. 278 Artemov A.V. 120 Artemov G.N. 274, 275 Artyomov M.N. 249 Artyushin I.V. 293 Astakhova T.V. 247 Atambayeva S.A. 110, 111 Atopkin D.M. 115 Aulchenko Y.S. 276, 321 Avgustinovich D.F. 48 Axenov-Gribanov D.V. 340 B Babenko V.N. 36, 49, 58, 187, 217 Badaeva E.D. 69 Bady-Khoo M.S. 71 Baev D.S. 37, 85 Bagina U.S. 38 Bagley O. 163 Bai H. 309 Bajic V.B. 120 Bakaher N. 282 Bakakina Y.S. 325 Bakulina A.Y. 57 Bal N. 222 Balaban P. 222 Balasov M.L. 26 Baraeva N.A. 74 Baranchikov Y. 139, 140 Baranova A. 164 Barashkov N.A. 71 Barkovskaya M.S. 45 Barnaeva E. 25 Bashmakov V.Yu. 91 Battey J.N.D. 282 Battulin N.R. 83, 178 Baturina G.S. 138 Belenikin M.S. 39, 46, 68 Beletsky A.V. 132 Belkova N.L. 109 Belova A.A. 157, 161, 286 Belyakov M.M. 286 Benítez-Burraco A. 96 Bernassola F. 30 Bezsudnova O.I. 40 Biberdorf E.A. 65 Biryukov V.V. 215 Bjoras M. 267 Bjorge M.D. 267 Blagojevic B. 41 Blinov A. 139, 140, 141, 303, 329 Blomquist D.V. 82 357 THE TENTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY Bobak Y. 198 Bocharnikov A.V. 331 Bogachev M.I. 42, 182 Bogdanov M.R. 43 Bogdanov Yu.F. 93 Bogomolov A.G. 44, 45, 112, 217 Boldyreva L.V. 298, 299 Bolotovskiy A.A. 172 Bolsheva N.L. 46, 68 Bondar E.I. 47 Bondar N.P. 48, 278 Borisenko A.Yu. 109, 232 Boulygina E.A. 168, 283 Boulygina E.S. 201, 289 Bovet L. 282 Boytsov S.A. 122 Bragin A.O. 36, 49, 187, 203, 317 Bragina E.U. 264 Bragina M.K. 203 Brittal D. 50 Brusic V. 349 Bruskin S. 314 Bryanskaya A.V. 188, 230, 258, 296 Brykov V.A. 115 Bryzgalov L.O. 48 Brzhozovsky A.G. 228 Buchbinder J.H. 51 Budnyk V. 225 Bugrov A.G. 112, 303 Bukharina T.A. 52, 53 Bukin S.Ju. 128 Bukin Yu.S. 54, 55, 72, 284 Buleu O.G. 112 Buneva V.N. 269, 270 Butyaev A. 56 Bychkov I.Y. 107 Bykova I.V. 57 C Carninci P. 102 Chadaeva I.V. 36, 49, 58, 317 Chamovitz D.A. 342 Chebotarov D. 314 Chechushkov A.V. 59 Chekalin E. 314 Chekantsev A.D. 60, 131 Chekmarev S.F. 31 Chen H. 175 Chen M. 61 Cherkasov A.V. 62, 152, 261 Chernichenko M.A. 157, 161, 287 Chernyagina E. 192 Chertkova A.A. 63 Cheryomushkin E.S. 204 Chesnokov I.N. 26 Chesnokova E. 222 Chistyakov V.A. 248 Chmyhalo V.K. 248 Churilov M.N. 248 Churkina T.V. 309, 310 Colonna M. 249 Cornette R. 64, 67, 124, 125, 152, 153, 202, 288 Cruz O.G. 82 Culminskaya I. 163 D Dadosh T. 133 Danilau D.E. 174 Danilova Y.E. 57 Datskih E.O. 107 Davydenko O.G. 174 Davydova S.G. 65 de Villavicencio-Díaz N.T. 82 Dedkov V.G. 293 Deeva A.A. 66 Demenkov P.S. 186, 187, 264, 265 Demidov E.A. 188, 296 Demidov O.N. 89 Demidova E.V. 188 Demkiv A.O. 347 Deviatiiarov R.M. 67, 78, 152, 153, 288 Deviatkin A.A. 293 Devyatkin V.A. 193 Djordjevic M. 41, 41, 99, 255, 295 Dmitriev A.A. 46, 68, 155, 156, 157, 161, 286 Dobretsov N.L. 230 Dobrokhotov I.V. 228 Dobrovolskaya E.V. 290 Dobrovolskaya O.B. 69 Dorofeyeva Y.B. 236 Dorogova N.V. 26 Doroshkov A.V. 70, 143, 281, 352 Doseth B. 160 Drabløs F. 160 Drost H.-G. 95 Duan M. 163 Dubovskaya L.V. 325 Duzhak T.G. 291 Dyachenko I.S. 71 Dzhioev Yu.P. 54, 72, 109, 128, 226, 232 E Edelson B.T. 249 358 THE TENTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY Efimov K.V. 73 Efimov V.M. 73, 253, 296 Egorova E.D. 74 Eide L. 267 Eisenbach M. 133 El-Seedy A. 264 Endutkin A.V. 75 Erokhin I.L. 76 Ershov N.E. 48, 77 Ershov N.I. 253, 297 Ershova A.I. 122 Ershova A.S. 40 Esipov D.S. 183, 189 Evdokimov A. 79 Evsutina D.V. 87 F Fan G. 77 Fang F. 163 Fedintsev A. 192 Fedorov V.I. 80 Fedorova M.S. 157, 161, 286, 287 Fedorova S.A. 26, 27 Fedoseeva L.A. 253 Fedotova V.S. 81 Ferrer M. 25 Fet V. 140 Filimonov D.A. 108, 117, 246, 313 Filipenko M.L. 309, 310 Filyushin M.A. 132 Finkelshtein A. 342 Fishman V. 83 Fisunov G.U. 87 Flassig R.J. 51 Fogolín M.B. 82 Fomin E.S. 84 Forrest A. 102 Frankevich V.E. 175 Freidin M. 264 Freilich S. 98, 342 Frolova T.S. 85 Furman D.P. 52, 53, 218 Fursova A.Z. 107, 260 Furusawa T. 124, 288 G Gabel A. 95 Galashevskaya A. 160 Galimova J. 229 Galkin A.P. 208 Galyamina A.G. 86 Garanina I.A. 87 García Y.C. 82 García-Martínez K. 242 Gardon D.P. 82 Gatti M. 229, 298, 299 Gaur A.S. 199 Gazizova G.R. 88 Genaev M.A. 135 Georgiou C.A. 349 Gerasimov A.V. 328 Giannenas I. 349 Gieger C. 276, 321 Gilfilan S. 249 Gloriozova T.A. 246 Glushchenko A.V. 97 Goble C. 158 Goepfert S. 282 Golebiewski M. 158 Golosova O.I. 57 Goloudina A.R. 89 Golovin A.V. 347 Golubyatnikov V.P. 52, 53 Golushko S.K. 206, 351 Golyshev V.M. 90 Goncharov N.P. 141 Goncharova I.A. 312 González L.J. 82 Gorbacheva T.M. 91 Gordiev M. 280 Gorev D.D. 247 Goryachkovskaya T.N. 188 Govorun V.M. 87, 304 Grekhov G.A. 57, 316 Grigorash B.B. 89 Grigorieva T.V. 168 Grin I.R. 92 Grishaeva T.M. 93 Grishenko M. 94 Grosse I. 95 Gruzdev E.V. 132 Gubanova N.V. 97 Gunbin K. 94, 96, 244 Gunbin K.V. 34, 97, 187, 195, 324 Gupta S. 98 Gursky V.V. 63, 151 Guryeva P.I. 237 Gusareva E.S. 127 Gusev F.E. 48, 96 Gusev O.A. 62, 67, 78, 88, 124, 125, 152, 153, 165, 202, 261, 280, 288 Gushchina I.V. 207 Guzina J. 99, 295 359 THE TENTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY Gómez Y.R. 82 H Hadarovich A. 100 Hall A.B. 274 Hano S. 105 Hayashizaki Y. 102 He L. 163 Hegre S.A. 160 Hildrestrand G. 267 Ho B.A. 25 Hofestaedt R. 101, 264 Hon C.-C. 102 Hu X. 25 Huang Z. 25 I Ignatieva E.V. 103, 104 Ignatov A.N. 304 Ikeda H. 319 Imoto N. 105 Ishchenko A.A. 92 Ishchenko A.S. 106 Iskakov I.A. 138 Ito A. 105 Ivanisenko N.V. 28, 106 Ivanisenko T.V. 230, 258 Ivanisenko V.A. 28, 106, 186, 228, 230, 235, 264, 265, 318 Ivanoshchuk D.E. 107, 272 Ivanov N.V. 282 Ivanov S.M. 108 Ivanov V.B. 169 Ivanova E.I. 109 Ivashchenko A.T. 110, 111, 238 Ivashko E.E. 205 Iwata K-I. 64 J Janardhan S. 199 Jetybayev I.E. 112 Jiang X. 274 K Kabilov M.R. 97 Kadnikov V.V. 132 Kaina B. 113 Kairov U. 114 Kalinin D.V. 157, 161, 286, 287 Kamaltynov R.M. 257 Kamenskaya D.N. 115 Kanayama Y. 105, 116, 2008, 319 Kandrov D.Y. 57 Kapranov P. 33 Kaprin A.D. 286 Karamysheva T.V. 44 Karasev D.A. 117, 313 Kardymon O.L. 157, 161, 286, 287 Karpov I.A. 174 Karpova I.Y. 118, 157, 161, 286, 287 Karyagina A.S. 40 Kashina E.V. 218, 278 Kashirina D.N. 228, 318 Kastenmüller G. 321 Katkova L.E. 138 Katz E. 342 Kavli B. 160 Kaygorodova I.A. 181 Kaymonov V.S. 237 Kayumov A.R. 42, 182 Kazantsev F.V. 119, 150 Kazantsev M.V. 52, 53 Kel-Margoulis O.V. 164 Kelsh R.N. 302 Kernogitski Y. 163 Khairetdinov M. 94 Khamis A. 120 Khlebodarova T.M. 119, 254 Khlebus E.Yu. 122 Khlestkina E.K. 281, 300 Khodus T. 225 Khodyreva S.N. 147 Khokhlov A.N. 123, 183, 189 Khramtsova E.A. 333 Khromova P. 212 Khusnutdinova E.K. 85 Kikawada T. 64, 67, 78, 124, 125, 152, 153, 165, 202, 261, 288 Kikuta S. 64, 124, 125, 288 Kim A.V. 126 Kim H.L. 127 Kipen V.N. 322 Kirillova E.R. 283 Kiselev D.O. 54, 128 Kiselev S.L. 188 Kiseleva A.A. 129 Kiseleva A.V. 122 Kiseleva E.V. 179, 298, 299, 326 Kishlyan N.V. 68 Kiss V. 133 Kit Y. 198 Klimenko A.I. 130, 131, 353 Klimina K.M. 157, 161, 287 360 THE TENTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY Klimov L.O. 253 Kochetkov D.V. 161 Kochetkova E.Y. 89 Kochetov A.V. 353 Kochieva E.Z. 132 Kochneva G.V. 148 Koganitsky A. 133 Kolchanov N.A. 130, 188, 230, 265, 331, 351 Kolesanova E.F. 311 Kolker E.V. 175 Kolosov P. 222 Kolosova N.A. 193 Kolosova N.G. 144, 259, 260, 297, 308, 315, 326 Kolpakov F.A. 134, 344, 239 Komissarov A.S. 219 Komyshev E.G. 135 Kondrakhin Yu.V. 136, 344 Kondrashov F.A. 137, 332 Kondratenko E.Ya. 141 Konenkov V.I. 145, 213 Konev A.A. 138 Kononikhin A.S. 228 Kononov A. 139, 140 Konopatskaia I. 141, 329 Konorov E.A. 142 Konovalova N.A. 107, 265 Konovalova O.S. 107, 265 Konstantinov D.K. 143 Korbolina E.E. 144, 260 Koroban N.V. 68 Korolev M.A. 145, 213 Korvald H. 267 Korvigo I.O. 146 Kosova A.A. 147 Kostryukova E.S. 236 Kotova S.A. 322, 323 Koval O.A. 148 Kovalenko I.L. 86 Kovalenkova M.V. 149 Kovaleva V.Y. 73 Kovriznykh V.V. 150 Kovtun M. 163 Kozhevnikova O.S. 315 Kozlov K.N. 63, 151 Kozlov V.A. 45 Kozlova I.V. 54, 72, 226 Kozlova O.S. 88, 152, 153, 165 Krasikova A. 83 Krasnikov A.A. 69 Krasnobaeva L.A. 154 Krasnov G.S. 46, 68, 155, 156, 157, 161, 286, 287 Kratasyuk V.A. 66 Krebs O. 158 Krementsova A.V. 159, 263 Krinitsina A.A. 39, 46, 68 Krivozubov M.S. 231 Krokan H.E. 160 Krutovsky K.V. 47, 215, 251 Kudryavtsev I.V. 166 Kudryavtseva A.V. 46, 68, 155, 156, 157, 161, 286, 287 Kudryavtseva N.N. 86 Kulakova E.V. 162, 217 Kulakovskiy I.V. 151, 337 Kuleshov K.V. 293 Kuligina E.V. 148 Kulipanov G.N. 188 Kulminski A.M. 163 Kundrotas P.J. 100 Kuptsov S.V. 39 Kural K.C. 164 Kusnierczyk A. 267 Kuzmin D.A. 215, 251 Kuznecova S.V. 165 Kuznetsov S.R. 166 Kuznetsova I.S. 219 Kuzyakiv R. 158 Kwon D.A. 167 L Labeit S.B. 238 Lagarkova M.A. 188 Lagunin A.A. 108, 246 Laikov A.V. 168 Laktionov P.P. 325 Lakunina V.A. 46 Lampropoulou V. 249 Larina I.M. 228, 318 Lashin S.A. 60, 71, 119, 130, 131, 195, 196, 353 Lavrekha V.V. 169 Lavrik I.N. 51, 106, 235, 265 Lavrik O. Lavrik O.I. 29, 79, 147, 170, 171 Lazareva E.V. 230 Leanovich S.I. 333 Lebedev M.O. 343 Letyagina E.A. 145, 213 Levin B.A. 172 Levina M.A. 172 Levinskikh M.A. 62 361 THE TENTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY Levitsky V.G. 103, 348 León K. 242 Li G. 173, 217 Liabakk N.B. 160 Liaudanski A.D. 174 Lichoman A.V. 283 Likhoshvai V.A. 119, 254 Lioznova A.V. 120 Lipatova A.V. 161 Lisitsa A.V. 175 Liu X. 77 Lobynya S.A. 241 Logacheva M.D. 39, 88, 152, 153, 165, 202, 257 Loginicheva E. 249 Loika Y. 163 Loiko E. 163 Lomert E. 224 Lomzov A.A. 90, 176 Long M. 177 Lukyanchikova V.A. 178 Luna L. 267 Luppov D. 33 Luster D.G. 304 Luzhetskyy A.N. 340 Luzianin S. 329 Lysenkov S.N. 142 Download 3.91 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling