International research journal
Актуальность, теоретическая и практическая значимость работы
Download 5.03 Kb. Pdf ko'rish
|
1-1-103
Актуальность, теоретическая и практическая значимость работы
Актуальность исследования геометрии изгибаемых абсолютных (диких) узлов и кос в трехмерном паутинном пространстве обусловлена тем, что она является обобщенной моделью Антуана компакта трехмерного пространства, привлекающего на протяжении почти века внимание геометров, топологов и физиков. Несмотря на то, что работа носит теоретический характер, полученные в ней результаты могут быть использованы в различных задачах маломерной топологии, спирально винтовой геометрии и топологии, а также в архитектурно - строительной инженерии при строительстве высотных спирально винтовых сооружений (где устойчивость витков сооружений играет важную роль). Напоминаем, что узел называется ручным, если существует его расширение до полнотория 2 1 D S , допускающее вложение в 3 - сферу. А дикими называются узлы, содержащие дуги Фокса - Артина - некоторые простые дуги, полученные диким вложением в трехмерное евклидово пространство 3 E . Также легко можно построить дикий узел, содержащий не только одну, а несколько патологических точек, образующих канторово множество. Если для любых двух непрерывных функций ) (t и ) (t на отрезке ] , 0 [ t существует гладкая кривая кривизна и кручения которой определяются уравнениями кривой ( ) ( ) k t t (1) то уравнения кривой (1) не зависят от выбора системы координат. Поэтому кривая определена уравнениями кривой (1) однозначно с точностью до перемещения в пространстве. Следовательно, уравнения пространственной кривой (1) задают её кривизну и кручения с учётом того, что отношение кручения к кривизне постоянно. По сути дела, кривизна — это мера отклонения кривой от касательной, а кручение — это мера отклонения кривой от соприкасающейся плоскости. Но, с другой стороны, для координатных функций кривой имеет место уравнение ) ( 2 2 , 2 sin 2 , 2 cos 2 2 2 2 2 2 2 k z k k y k k x (2) которое определяет винтовую линию, лежащую на круговом цилиндре 2 2 2 2 2 2 ) ( k k y x (3) Так как нормали в точках поверхности, образованной касательными к винтовой линии, образуют постоянный угол с осью винта, то чем больше мера отклонения кривой от соприкасающейся плоскости, тем кривая пространственнее. В противном случае кривая меньше отличается от плоской кривой. Подобно тому, что при винтовом движении точек образуются винтовые линии (цилиндрические, конические, сферические и гиперболические) и при винтовом движении отрезка прямой линии получается винтовая поверхность, можно получить винтовое геометрическое тело. Если какую- либо плоскую фигуру передвигать по поверхности круглого цилиндра так, чтобы вершины плоской фигуры перемещались по винтовым линиям, а плоскость плоской фигуры постоянно проходила через ось круглого цилиндра, то образуется винтовой выступ, ограниченный винтовыми и цилиндрическими поверхностями. Следовательно, построение такого винтового выступа сводится к построению стольких винтовых линий, сколько вершин у выбранной плоской фигуры. Из пространственных кривых линий, в технике широко применяются цилиндрические винтовые линии одинакового уклона - геликоиды. Как геометрическая фигура, геликоид по своему значению по разнообразию форм и свойств не имеет себе равных. Иначе говоря, геликоид — это винтовая поверхность, описываемая параметрическими соотношениями, образованная движением прямой, вращающейся вокруг перпендикулярной к ней оси и одновременно поступательно движущейся в направлении этой оси с пропорциональной скоростью этих движений. Главной особенностью этой винтовой линии является минимальная величина, подвергаемая к любой деформации её площади при заданной внешней границе. Так как изгибание поверхности представляет собой топологическое отображение, то есть гомеоморфизм, который исключает сжатие и растяжение, то небольшую локальную область геликоида можно изометрически продеформировать в локальной области катеноида или однополостного гиперболоида. Download 5.03 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling