Исторические сведения о теории вероятности и математической статистики


«Искусство предположений» Якоба Бернулли


Download 214.89 Kb.
bet2/3
Sana20.01.2023
Hajmi214.89 Kb.
#1105143
1   2   3
Bog'liq
1 историч

«Искусство предположений» Якоба Бернулли[править | править код]

Якоб Бернулли
Базель, Исторический музей
Над трактатом «Искусство предположений» Якоб Бернулли работал двадцать лет, уже лет за десять до публикации текст этого труда в виде незаконченной рукописи стал распространяться по Европе, вызывая большой интерес. Трактат стал первым систематическим изложением теории вероятностей. В этой книге автор привёл, в частности, классическое определение вероятности события как отношения числа исходов, связанных с этим событием, к общему числу исходов (у достоверного события вероятность равна единице, у невозможного — нулю). Систематически изученная Бернулли вероятностная схема сейчас называется биномиальным распределением[25].
Ранее математики чаще всего оперировали самим количеством исходов; историки полагают, что замена количества на «частоту» (то есть деление на общее количество исходов) была стимулирована статистическими соображениями: частота, в отличие от количества, обычно имеет тенденцию к стабилизации при увеличении числа наблюдений. Определение вероятности «по Бернулли» сразу стало общепринятым, его воспроизводили Абрахам де Муавр в книге «Учение о случаях» (1718) и все последующие математики. Единственное важное уточнение — о том, что все «элементарные исходы» обязаны быть равновероятны, — сделал Пьер-Симон Лаплас в 1812 году. Если для события невозможно подсчитать классическую вероятность (например, из-за отсутствия возможности выделить равновероятные исходы), то Бернулли предложил использовать статистический подход, то есть оценить вероятность по результатам наблюдений этого события или связанных с ним[25].

Трактат «Искусство предположений»
В первой части своего трактата Бернулли полностью перепечатывает книгу Гюйгенса, которой он даёт самую высокую оценку, и существенно дополняет собственными комментариями. В частности, он приводит общую «формулу Бернулли»: если вероятность события равна {\displaystyle p} , то вероятность того, что в {\displaystyle n}  испытаниях событие случится {\displaystyle m}  раз, равна {\displaystyle C_{n}^{m}p^{m}(1-p)^{n-m}} . Далее Бернулли подробно излагает комбинаторику и на её основе решает несколько задач со случайным выбором. В последней части книги, оставшейся недописанной, Бернулли собирался рассмотреть экономические и другие практические приложения теории вероятностей[26].
Огромное значение как для теории вероятностей, так и для науки в целом имел доказанный Бернулли первый вариант закона больших чисел (название закону дал позже Пуассон)[27]. Этот закон объясняет, почему статистическая частота при увеличении числа наблюдений сближается с теоретическим её значением — вероятностью, и тем самым связывает два разных определения вероятности. В дальнейшем закон больших чисел трудами многих математиков был значительно обобщён и уточнён; как оказалось, стремление статистической частоты к теоретической отличается от стремления к пределу в анализе — частота может значительно отклоняться от ожидаемого предела, и можно только утверждать, что вероятность таких отклонений с ростом числа испытаний стремится к нулю. Вместе с тем отклонения частоты от вероятности также поддаются вероятностному анализу[28].

Download 214.89 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling