Jerry L. Kazdan


Download 11.48 Kb.
Sana27.03.2023
Hajmi11.48 Kb.
#1299243
Bog'liq
sum-sin kx



Math 202


Jerry L. Kazdan





cos 2 cos(n + 2)x
sinx + sin 2x + • • • + sin nx = 2 2 2
2 sin x
The key to obtaining this formula is either to use some imaginative trigonometric identities or else recall that eix = cos x + i sin x and then routinely sum a geometric series. I prefer the later. Thus


(1)
sin x + sin2x + • • • + sin nx = Im{eix + ei2x + • • • + einx},
where Im {z} means take the imaginary part of the complex number z = x + iy . The sum on the right side is a (finite) geometric series t + t2 + • • • tn where t = eix:







Thus

t +t2 + + tn

t(1 — tn)
1 —
t

sin x + sin 2x + • • • + sin nx = Im

eix (1 einx )
1 — e
ix

(2)



We need to find the imaginary part of the fraction on the right. The denominator is what needs work. By adding and subtracting
ei = cos Q + i sin Q and e -i = cos Q — i sin 0
we obtain the important formulas



cos Q = ei6 +2e i6 and

ei6 _ e-i6
sin Q = e O e 2i




Thus so

eix(1 — einx)
1 — e
ix


1 — eix = eix/2 (e-ix/2 — eix/2} = —2ieix/2 sin 2
ei2 ei(n+1)x
2 sin x
Consequently, from (2), taking the imaginary part of the right side (so the real part of [• • • ]) we obtain the desired formula:

sin x + sin 2x + • • • + sin nx =
cos x cos(n + 2)x
2 sin 2
Exercise 1: By taking the real part in (2) find a formula for cos x + cos 2x + • • • + cos nx.
Exercise 2: Use sin(a + x) + sin(a + 2x)+ +sin(a + nx) = Im{eia(eix + + einx)} to
compute a formula for sin(a + x) + sin(a + 2x) + • • • + sin(a + nx). [Taking the derivative of this formula with respect to a gives another route to the formula of Exercise 1 .]
[Last revised: January 3, 2010]


1



Download 11.48 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling