Kinetic study and real-time monitoring strategy for tempo-mediated oxidation of bleached eucalyptus fibers


Download 1.85 Mb.
Pdf ko'rish
bet13/14
Sana23.01.2023
Hajmi1.85 Mb.
#1113459
1   ...   6   7   8   9   10   11   12   13   14
Bog'liq
s10570-022-05013-7

Consent for publication All authors have revised the 
last version of the submitted manuscript and we approve its 
submission.
Open Access This article is licensed under a Creative 
Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/
.
References
Aguado R, Moral A, Tijero A (2018) Cationic fibers from crop 
residues: making waste more appealing for papermaking. 
J Clean Prod 174:1503–1512. 
https:// doi. org/ 10. 1016/j. 
jclep ro. 2017. 11. 053
Balea A, Sanchez-Salvador JL, Monte MC et al (2019) In situ 
production and application of cellulose nanofibers to 
improve recycled paper production. Molecules. 
https:// 
doi. org/ 10. 3390/ molec ules2 40918 00
Balea A, Blanco A, Delgado-Aguilar M et al (2021) 
Nanocellulose characterization challenges. Bioresources 
16:4382–4410
Beaumont M, Tardy BL, Reyes G et al (2021) Assembling 
native elementary cellulose nanofibrils via a reversible 
and regioselective surface functionalization. J Am Chem 
Soc 143:17040–17046
Besemer AC, de Nooy AEJ, van Bekkum H (1998) Methods 
for the selective oxidation of cellulose: preparation of 
2,3-dicarboxycellulose and 6-carboxycellulose. ACS 
Publications
Bialik E, Stenqvist B, Fang Y et al (2016) Ionization of 
cellobiose in aqueous alkali and the mechanism of 
cellulose dissolution. J Phys Chem Lett 7:5044–5048. 
https:// doi. org/ 10. 1021/ acs. jpcle tt. 6b023 46
Carrasco F, Mutjé P, Pelach MA (1996) Refining of bleached 
cellulosic pulps: characterization by application of 
the colloidal titration technique. Wood Sci Technol 
30:227–236
Clauser NM, Felissia FF, Area MC, Vallejos ME (2022) 
Chapter 2—Technological and economic barriers of 
industrial-scale production of nanocellulose. In: Shanker 
U, Hussain CM, Rani MBT-GN for IA (eds) Micro and 
Nano Technologies. Elsevier, pp 21–39
Dai L, Dai H, Yuan Y et al (2011) Effect of TEMPO 
oxidation system on kinetic constants of cotton fibers. 
BioResources 6:2619–2631
de Nooy AE, Besemer AC, van Bekkum H (1994) Highly 
selective TEMPO-mediated oxidation of primary 
alcohol groups in polysaccharides. Recl Trav Chim 
113:165–166
de Nooy AE, Besemer AC, van Bekkum H (1995) Selective 
oxidation of primary alcohols mediated by nitroxyl 
radical in aqueous solution. Kinet Mech Tetrahedron 
51:8023–8032
Farkas L, Lewin M, Bloch R (1949) The reaction between 
hypochlorite and bromides. J Am Chem Soc 
71:1988–1991
Fedorov PP, Luginina AA, Kuznetsov SV et al (2020) 
Hydrophobic up-conversion carboxylated nanocellulose/
fluoride phosphor composite films modified with alkyl 
ketene dimer. Carbohydr Polym 250:116866. 
https:// doi. 
org/ 10. 1016/J. CARBP OL. 2020. 116866
Filipova I, Serra F, Tarrés Q et al (2020) Oxidative treatments 
for cellulose nanofibers production: a comparative study 
between TEMPO-mediated and ammonium persulfate 
oxidation. Cellulose 27:10671–10688. 
https:// doi. org/ 10. 
1007/ s10570- 020- 03089-7
Friedlander BI, Dutt AS, Rapson WH (1966) The infrared 
spectra of oxidized cellulose, part III, sodium hypochlorite 
oxidation. Tappi 49:468–472
Fujisawa S, Okita Y, Fukuzumi H et al (2011) Preparation and 
characterization of TEMPO-oxidized cellulose nanofibril 
films with free carboxyl groups. Carbohydr Polym 
84:579–583. 
https:// doi. org/ 10. 1016/j. carbp ol. 2010. 12. 
029
Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized 
cellulose nanofiber. Nanoscale 3:71–85. 
https:// doi. org/ 10. 
1039/ c0nr0 0583e
Isogai A, Hänninen T, Fujisawa S, Saito T (2018) Catalytic 
oxidation of cellulose with nitroxyl radicals under aqueous 
conditions. Prog Polym Sci 86:122–148
Jiang B, Drouet E, Milas M, Rinaudo M (2000) Study on 
TEMPO-mediated selective oxidation of hyaluronan and 
the effects of salt on the reaction kinetics. Carbohydr Res 
327:455–461. 
https:// doi. org/ 10. 1016/ S0008- 6215(00) 
00059-8


Cellulose 
1 3
Vol.: (0123456789)
Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: new 
data content and improved web interfaces. Nucleic Acids 
Res 49:D1388–D1395. 
https:// doi. org/ 10. 1093/ nar/ gkaa9 
71
Kucera J (2019) Biofouling of polyamide membranes: fouling 
mechanisms, current mitigation and cleaning strategies, 
and future prospects. Membranes 9:111
Levanič J, Šenk VP, Nadrah P et al (2020) Analyzing TEMPO-
oxidized cellulose fiber morphology: new insights into 
optimization of the oxidation process and nanocellulose 
dispersion quality. ACS Sustain Chem Eng 8:17752–
17762. 
https:// doi. org/ 10. 1021/ acssu schem eng. 0c059 89
Lin C, Zeng T, Wang Q et al (2018) Effects of the conditions 
of the TEMPO/NaBr/NaClO system on carboxyl groups, 
degree of polymerization, and yield of the oxidized 
cellulose. BioResources 13:5965–5975
Nutting JE, Rafiee M, Stahl SS (2018) Tetramethylpiperidine 
N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and 
related N-oxyl species: electrochemical properties 
and their use in electrocatalytic reactions. Chem Rev 
118:4834–4885
Pääkkönen T, Bertinetto C, Pönni R et al (2015) Rate-limiting 
steps in bromide-free TEMPO-mediated oxidation of 
cellulose—quantification of the N-Oxoammonium cation 
by iodometric titration and UV–vis spectroscopy. Appl 
Catal A Gen 505:532–538. 
https:// doi. org/ 10. 1016/j. 
apcata. 2015. 07. 024
Pääkkönen T, Dimic-Misic K, Orelma H et al (2016) Effect 
of xylan in hardwood pulp on the reaction rate of 
TEMPO-mediated oxidation and the rheology of the 
final nanofibrillated cellulose gel. Cellulose 23:277–293. 
https:// doi. org/ 10. 1007/ s10570- 015- 0824-7
Saito T, Isogai A (2004) TEMPO-mediated oxidation of native 
cellulose. The effect of oxidation conditions on chemical 
and crystal structures of the water-insoluble fractions. 
Biomacromolecules 5:1983–1989. 
https:// doi. org/ 10. 
1021/ bm049 7769
Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose 
nanofibers prepared by TEMPO-mediated oxidation 
of native cellulose. Biomacromolecules 8:2485–2491. 
https:// doi. org/ 10. 1021/ bm070 3970
Sanchez-Salvador JL, Campano C, Negro C et al (2021) 
Increasing the possibilities of TEMPO-mediated oxidation 
in the production of cellulose nanofibers by reducing 
the reaction time and reusing the reaction medium. Adv 
Sustain Syst 5:2000277. 
https:// doi. org/ 10. 1002/ adsu. 
20200 0277
Sang X, Qin C, Tong Z et al (2017) Mechanism and kinetics 
studies of carboxyl group formation on the surface 
of cellulose fiber in a TEMPO-mediated system. 
Cellulose 24:2415–2425. 
https:// doi. org/ 10. 1007/ 
s10570- 017- 1279-9
Sbiai A, Kaddami H, Sautereau H et al (2011) TEMPO-
mediated oxidation of lignocellulosic fibers from date 
palm leaves. Carbohydr Polym 86:1445–1450. 
https:// doi. 
org/ 10. 1016/j. carbp ol. 2011. 06. 005
Serra A, González I, Oliver-Ortega H et al (2017) Reducing 
the amount of catalyst in TEMPO-oxidized cellulose 
nanofibers: effect on properties and cost. Polymers. 
https:// doi. org/ 10. 3390/ polym 91105 57
Serra-Parareda F, Aguado R, Tarrés Q et al (2021a) 
Potentiometric back titration as a robust and simple 
method for specific surface area estimation of 
lignocellulosic fibers. Cellulose 28:10815–10825. 
https:// 
doi. org/ 10. 1007/ s10570- 021- 04250-6
Serra-Parareda F, Tarrés Q, Sanchez-Salvador JL et al 
(2021b) Tuning morphology and structure of non-
woody nanocellulose: ranging between nanofibers and 
nanocrystals. Ind Crops Prod. 
https:// doi. org/ 10. 1016/j. 
indcr op. 2021. 113877
Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship 
between length and degree of polymerization of TEMPO-
oxidized cellulose nanofibrils. Biomacromolecules 
13:842–849. 
https:// doi. org/ 10. 1021/ bm201 7542
Spier VC, Sierakowski MR, Reed WF, de Freitas RA (2017) 
Polysaccharide depolymerization from TEMPO-catalysis: 
effect of TEMPO concentration. Carbohydr Polym 
170:140–147. 
https:// doi. org/ 10. 1016/J. CARBP OL. 2017. 
04. 064
Sun B, Gu C, Ma J, Liang B (2005) Kinetic study on 
TEMPO-mediated selective oxidation of regenerated 
cellulose. Cellulose 12:59–66. 
https:// doi. org/ 10. 1007/ 
s10570- 004- 0343-4
Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) 
A comparative study of Eucalyptus and Pinus radiata 
pulp fibres as raw materials for production of cellulose 
nanofibrils. Carbohydr Polym 84:1033–1038. 
https:// doi. 
org/ 10. 1016/j. carbp ol. 2010. 12. 066
Tarrés Q, Oliver-Ortega H, Llop M et al (2016) Effective and 
simple methodology to produce nanocellulose-based 
aerogels for selective oil removal. Cellulose 23:3077–
3088. 
https:// doi. org/ 10. 1007/ s10570- 016- 1017-8
Tarrés Q, Boufi S, Mutjé P, Delgado-Aguilar M (2017) 
Enzymatically hydrolyzed and TEMPO-oxidized 
cellulose nanofibers for the production of nanopapers: 
morphological, optical, thermal and mechanical 
properties. Cellulose 24:3943–3954. 
https:// doi. org/ 10. 
1007/ s10570- 017- 1394-7
Tarrés Q, Mutjé P, Delgado-Aguilar M (2019) Towards the 
development of highly transparent, flexible and water-
resistant bio-based nanopapers: tailoring physico-
mechanical properties. Cellulose 26:6917–6932. 
https:// 
doi. org/ 10. 1007/ s10570- 019- 02524-8
Tarrés Q, Aguado R, Pèlach MÀ et al (2022) Electrospray 
deposition of cellulose nanofibers on paper: overcoming 
the limitations of conventional coating. Nanomaterials 
12:79
Towler G, Sinnott R (2021) Chemical engineering design: 
principles, practice and economics of plant and process 
design, 3rd edn. Elsevier
Turk J, Oven P, Poljanšek I et al (2020) Evaluation of an 
environmental profile comparison for nanocellulose 
production and supply chain by applying different life 
cycle assessment methods. J Clean Prod 247:119107. 
https:// doi. org/ 10. 1016/j. jclep ro. 2019. 119107
Weber OH, Husemann E (1942) Über Zusammenhänge 
zwischen Carboxylgehalt und Polymerisationsgrad 
von Cellulosen bei der Vorreife der Viscose und der 
Chlorbleiche. 305. Mitteilung über makromolekulare 
Verbindungen. J Prakt Chem 161:20–29. 
https:// doi. org/ 
10. 1002/ prac. 19421 610102


 Cellulose
1 3
Vol:. (1234567890)
Zeng W-M, Wang Z-L, He Y-H, Guan Z (2022) 
Electrochemical radical-radical cross-coupling: direct 
access to β-amino nitriles from unactivated imines and 
alkyl nitriles. Green Chem. 
https:// doi. org/ 10. 1039/ d2gc0 
0457g

Download 1.85 Mb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling