Kinetic study and real-time monitoring strategy for tempo-mediated oxidation of bleached eucalyptus fibers
Download 1,85 Mb. Pdf ko'rish
|
s10570-022-05013-7
Consent for publication All authors have revised the
last version of the submitted manuscript and we approve its submission. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . References Aguado R, Moral A, Tijero A (2018) Cationic fibers from crop residues: making waste more appealing for papermaking. J Clean Prod 174:1503–1512. https:// doi. org/ 10. 1016/j. jclep ro. 2017. 11. 053 Balea A, Sanchez-Salvador JL, Monte MC et al (2019) In situ production and application of cellulose nanofibers to improve recycled paper production. Molecules. https:// doi. org/ 10. 3390/ molec ules2 40918 00 Balea A, Blanco A, Delgado-Aguilar M et al (2021) Nanocellulose characterization challenges. Bioresources 16:4382–4410 Beaumont M, Tardy BL, Reyes G et al (2021) Assembling native elementary cellulose nanofibrils via a reversible and regioselective surface functionalization. J Am Chem Soc 143:17040–17046 Besemer AC, de Nooy AEJ, van Bekkum H (1998) Methods for the selective oxidation of cellulose: preparation of 2,3-dicarboxycellulose and 6-carboxycellulose. ACS Publications Bialik E, Stenqvist B, Fang Y et al (2016) Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution. J Phys Chem Lett 7:5044–5048. https:// doi. org/ 10. 1021/ acs. jpcle tt. 6b023 46 Carrasco F, Mutjé P, Pelach MA (1996) Refining of bleached cellulosic pulps: characterization by application of the colloidal titration technique. Wood Sci Technol 30:227–236 Clauser NM, Felissia FF, Area MC, Vallejos ME (2022) Chapter 2—Technological and economic barriers of industrial-scale production of nanocellulose. In: Shanker U, Hussain CM, Rani MBT-GN for IA (eds) Micro and Nano Technologies. Elsevier, pp 21–39 Dai L, Dai H, Yuan Y et al (2011) Effect of TEMPO oxidation system on kinetic constants of cotton fibers. BioResources 6:2619–2631 de Nooy AE, Besemer AC, van Bekkum H (1994) Highly selective TEMPO-mediated oxidation of primary alcohol groups in polysaccharides. Recl Trav Chim 113:165–166 de Nooy AE, Besemer AC, van Bekkum H (1995) Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinet Mech Tetrahedron 51:8023–8032 Farkas L, Lewin M, Bloch R (1949) The reaction between hypochlorite and bromides. J Am Chem Soc 71:1988–1991 Fedorov PP, Luginina AA, Kuznetsov SV et al (2020) Hydrophobic up-conversion carboxylated nanocellulose/ fluoride phosphor composite films modified with alkyl ketene dimer. Carbohydr Polym 250:116866. https:// doi. org/ 10. 1016/J. CARBP OL. 2020. 116866 Filipova I, Serra F, Tarrés Q et al (2020) Oxidative treatments for cellulose nanofibers production: a comparative study between TEMPO-mediated and ammonium persulfate oxidation. Cellulose 27:10671–10688. https:// doi. org/ 10. 1007/ s10570- 020- 03089-7 Friedlander BI, Dutt AS, Rapson WH (1966) The infrared spectra of oxidized cellulose, part III, sodium hypochlorite oxidation. Tappi 49:468–472 Fujisawa S, Okita Y, Fukuzumi H et al (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583. https:// doi. org/ 10. 1016/j. carbp ol. 2010. 12. 029 Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofiber. Nanoscale 3:71–85. https:// doi. org/ 10. 1039/ c0nr0 0583e Isogai A, Hänninen T, Fujisawa S, Saito T (2018) Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog Polym Sci 86:122–148 Jiang B, Drouet E, Milas M, Rinaudo M (2000) Study on TEMPO-mediated selective oxidation of hyaluronan and the effects of salt on the reaction kinetics. Carbohydr Res 327:455–461. https:// doi. org/ 10. 1016/ S0008- 6215(00) 00059-8 Cellulose 1 3 Vol.: (0123456789) Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. https:// doi. org/ 10. 1093/ nar/ gkaa9 71 Kucera J (2019) Biofouling of polyamide membranes: fouling mechanisms, current mitigation and cleaning strategies, and future prospects. Membranes 9:111 Levanič J, Šenk VP, Nadrah P et al (2020) Analyzing TEMPO- oxidized cellulose fiber morphology: new insights into optimization of the oxidation process and nanocellulose dispersion quality. ACS Sustain Chem Eng 8:17752– 17762. https:// doi. org/ 10. 1021/ acssu schem eng. 0c059 89 Lin C, Zeng T, Wang Q et al (2018) Effects of the conditions of the TEMPO/NaBr/NaClO system on carboxyl groups, degree of polymerization, and yield of the oxidized cellulose. BioResources 13:5965–5975 Nutting JE, Rafiee M, Stahl SS (2018) Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem Rev 118:4834–4885 Pääkkönen T, Bertinetto C, Pönni R et al (2015) Rate-limiting steps in bromide-free TEMPO-mediated oxidation of cellulose—quantification of the N-Oxoammonium cation by iodometric titration and UV–vis spectroscopy. Appl Catal A Gen 505:532–538. https:// doi. org/ 10. 1016/j. apcata. 2015. 07. 024 Pääkkönen T, Dimic-Misic K, Orelma H et al (2016) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23:277–293. https:// doi. org/ 10. 1007/ s10570- 015- 0824-7 Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. https:// doi. org/ 10. 1021/ bm049 7769 Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. https:// doi. org/ 10. 1021/ bm070 3970 Sanchez-Salvador JL, Campano C, Negro C et al (2021) Increasing the possibilities of TEMPO-mediated oxidation in the production of cellulose nanofibers by reducing the reaction time and reusing the reaction medium. Adv Sustain Syst 5:2000277. https:// doi. org/ 10. 1002/ adsu. 20200 0277 Sang X, Qin C, Tong Z et al (2017) Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system. Cellulose 24:2415–2425. https:// doi. org/ 10. 1007/ s10570- 017- 1279-9 Sbiai A, Kaddami H, Sautereau H et al (2011) TEMPO- mediated oxidation of lignocellulosic fibers from date palm leaves. Carbohydr Polym 86:1445–1450. https:// doi. org/ 10. 1016/j. carbp ol. 2011. 06. 005 Serra A, González I, Oliver-Ortega H et al (2017) Reducing the amount of catalyst in TEMPO-oxidized cellulose nanofibers: effect on properties and cost. Polymers. https:// doi. org/ 10. 3390/ polym 91105 57 Serra-Parareda F, Aguado R, Tarrés Q et al (2021a) Potentiometric back titration as a robust and simple method for specific surface area estimation of lignocellulosic fibers. Cellulose 28:10815–10825. https:// doi. org/ 10. 1007/ s10570- 021- 04250-6 Serra-Parareda F, Tarrés Q, Sanchez-Salvador JL et al (2021b) Tuning morphology and structure of non- woody nanocellulose: ranging between nanofibers and nanocrystals. Ind Crops Prod. https:// doi. org/ 10. 1016/j. indcr op. 2021. 113877 Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO- oxidized cellulose nanofibrils. Biomacromolecules 13:842–849. https:// doi. org/ 10. 1021/ bm201 7542 Spier VC, Sierakowski MR, Reed WF, de Freitas RA (2017) Polysaccharide depolymerization from TEMPO-catalysis: effect of TEMPO concentration. Carbohydr Polym 170:140–147. https:// doi. org/ 10. 1016/J. CARBP OL. 2017. 04. 064 Sun B, Gu C, Ma J, Liang B (2005) Kinetic study on TEMPO-mediated selective oxidation of regenerated cellulose. Cellulose 12:59–66. https:// doi. org/ 10. 1007/ s10570- 004- 0343-4 Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038. https:// doi. org/ 10. 1016/j. carbp ol. 2010. 12. 066 Tarrés Q, Oliver-Ortega H, Llop M et al (2016) Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose 23:3077– 3088. https:// doi. org/ 10. 1007/ s10570- 016- 1017-8 Tarrés Q, Boufi S, Mutjé P, Delgado-Aguilar M (2017) Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose 24:3943–3954. https:// doi. org/ 10. 1007/ s10570- 017- 1394-7 Tarrés Q, Mutjé P, Delgado-Aguilar M (2019) Towards the development of highly transparent, flexible and water- resistant bio-based nanopapers: tailoring physico- mechanical properties. Cellulose 26:6917–6932. https:// doi. org/ 10. 1007/ s10570- 019- 02524-8 Tarrés Q, Aguado R, Pèlach MÀ et al (2022) Electrospray deposition of cellulose nanofibers on paper: overcoming the limitations of conventional coating. Nanomaterials 12:79 Towler G, Sinnott R (2021) Chemical engineering design: principles, practice and economics of plant and process design, 3rd edn. Elsevier Turk J, Oven P, Poljanšek I et al (2020) Evaluation of an environmental profile comparison for nanocellulose production and supply chain by applying different life cycle assessment methods. J Clean Prod 247:119107. https:// doi. org/ 10. 1016/j. jclep ro. 2019. 119107 Weber OH, Husemann E (1942) Über Zusammenhänge zwischen Carboxylgehalt und Polymerisationsgrad von Cellulosen bei der Vorreife der Viscose und der Chlorbleiche. 305. Mitteilung über makromolekulare Verbindungen. J Prakt Chem 161:20–29. https:// doi. org/ 10. 1002/ prac. 19421 610102 Cellulose 1 3 Vol:. (1234567890) Zeng W-M, Wang Z-L, He Y-H, Guan Z (2022) Electrochemical radical-radical cross-coupling: direct access to β-amino nitriles from unactivated imines and alkyl nitriles. Green Chem. https:// doi. org/ 10. 1039/ d2gc0 0457g Download 1,85 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling