Курсовая работа по предмету «физическая химия»
Download 169.65 Kb.
|
20 66 Комилжонова Д Физ Химя Курсавая
2.2. Калори́метр
Калориме́трия (от лат. calor — тепло и лат. metro — измеряю) — совокупность методов измерения количества теплоты, выделяющейся или поглощаемой при протекании различных физических или химических процессов. Методы калориметрии применяют при определении теплоёмкости, тепловых эффектов химических реакций, растворении, смачивании, адсорбции, радиоактивного распада и др. Методы калориметрии также широко применяют в промышленности для определения теплотворной способности топлива. Основателем калориметрии можно считать шотландского химика и физика Джозефа Блэка. Он был первым учёным, который заметил различие между теплом и температурой. Прибор, измеряющий количество теплоты, называется калориметром. Колориметрия — это метод количественного определения содержания веществ в растворах, либо визуально, либо с помощью приборов, таких как колориметры. Колориметрия может быть использована для количественного определения всех тех веществ, которые дают окрашенные растворы, или могут дать окрашенное растворимое соединение с помощью химической реакции. Колориметрические методы основываются на сравнении интенсивности окраски исследуемого раствора, изучаемого в пропущенном свете, с окраской эталонного раствора, содержащего строго определенное количество этого же окрашенного вещества, или же с дистиллированной водой. Любопытна история возникновения колориметрии и фотометрии. Ю. А. Золотов упоминает, что Роберт Бойль (так же, как и некоторые ученые до него) использовал экстракт дубильных орешков, чтобы различить железо и медь в растворе. Однако, по-видимому, именно Бойль впервые заметил, что чем больше железа содержится в растворе, тем более интенсивна окраска последнего. [11-12] Это был первый шаг к колориметрии. А первым инструментом колориметрии стали колориметры типа колориметра Дюбоска (1870)[1], которые использовались вплоть до недавнего времени[2]. Более совершенные приборы — спектрофотометры — отличаются возможностью исследования оптической плотности в широком диапазоне длин волн видимого спектра, а также в ИК и УФ-диапазонах, с меньшей дискретностью длины волны (с использованием монохроматора). Фотоколориметры и спектрофотометры измеряют величину пропускания света при определенной длине волны света. Контроль (обычно дистиллированная вода или исходный материал без добавления реагентов) используется для калибровки устройства.Колориметрия широко применяется в аналитической химии, в том числе для гидрохимического анализа, в частности — для количественного анализа содержания биогенных веществ в природных водах[3], для измерения pH[4], в медицине, а также в промышленности при контроле качества продукции. Фотоколориметрия — количественное определение концентрации вещества по поглощению света в видимой и ближней ультрафиолетовой области спектра. Поглощение света измеряют на фотоколориметрах или спектрофотометрах. фотоколори́метр — оптический прибор для измерения концентрации веществ в растворах. Действие колориметра основано на свойстве окрашенных растворов поглощать проходящий через них свет тем сильнее, чем выше в них концентрация окрашивающего вещества. В отличие от спектрофотометра, измерения ведутся в луче не монохроматического, а полихроматического узко спектрального света, формируемого светофильтром. [11-12] Применение различных светофильтров с узкими спектральными диапазонами пропускаемого света позволяет определять по отдельности концентрации разных компонентов одного и того же раствора. В отличие от спектрофотометров, фотоколориметры просты, недороги и при этом обеспечивают точность, достаточную для многих применений. Колориметры разделяются на визуальные и объективные (фотоэлектрические) — фотоколориметры. В визуальных колориметрах свет, проходящий через измеряемый раствор, освещает одну часть поля зрения, в то время как на другую часть падает свет, прошедший через раствор того же вещества, концентрация которого известна. Изменяя толщину l слоя одного из сравниваемых растворов или интенсивность I светового потока, наблюдатель добивается, чтобы цветовые тона двух частей поля зрения были неотличимы на глаз, после чего по известным соотношениям между l, I и с может быть определена концентрация исследуемого раствора. Фотоэлектрические колориметры (фотоколориметры) обеспечивают большую точность измерений, чем визуальные; в качестве приёмников излучения в них используются фотоэлементы (селеновые и вакуумные), фотоэлектронные умножители, фоторезисторы и фотодиоды. Сила фототока приёмников определяется интенсивностью падающего на них света и, следовательно, степенью его поглощения в растворе (тем большей, чем выше концентрация). Помимо фотоэлектрического колориметра (фотоколориметра) с непосредственным отсчётом силы тока, распространены компенсационные колориметры, в которых разность сигналов, соответствующих стандартному и измеряемому растворам, сводится к нулю (компенсируется) электрическим или оптическим компенсатором (например, клином фотометрическим); отсчёт в этом случае снимается со шкалы компенсатора. [11-12] Компенсация позволяет свести к минимуму влияние условий измерений (температуры, нестабильности свойств элементов колориметра) на их точность. Показания колориметра не дают сразу значений концентрации исследуемого вещества в растворе — для перехода к ним используют градуировочные графики, полученные при измерении растворов с известными концентрациями. Измерения с помощью колориметра отличаются простотой и быстротой проведения. Точность их во многих случаях не уступает точности других, более сложных методов химического анализа. Нижние границы определяемых концентраций в зависимости от метода составляют от 10−3 до 10−8 моль/л. Спектрофотометр (лат. spectrum — видимое, видение, др.-греч. φῶς, родительный падеж φωτός — свет и μετρέω — измеряю) — прибор, предназначенный для измерения отношений двух потоков оптического излучения, один из которых — поток, падающий на исследуемый образец, другой — поток, испытавший то или иное взаимодействие с образцом. Позволяет производить измерения для различных длин волн оптического излучения, соответственно в результате измерений получается спектр отношений потоков. Спектрофотометр является основным прибором, используемым в спектрофотометрии. Обычно используется для измерения спектров пропускания или спектров отражения излучения На рисунках приведены две основные схемы спектрофотометров, измеряющих спектральный апертурный коэффициент отражения образца относительно рабочего стандарта с известной спектральной характеристикой. Возможно помещение монохроматора в пучок отраженного света от образца или стандарта или освещение образца и стандарта монохроматическим излучением после монохроматора. Для улучшения характеристик и точности измерений в современных спектрофотометрах также используются двойные монохроматоры. Download 169.65 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling