Ma`lumotlar intelektual taxlili
Download 28.3 Kb.
|
yakuniy biletlar
"Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 1 1. What is feature selection(Atributlarni tanlash nima)? 2. What is not Data mining(Qaysi xolatlar ma'lumotlarni intellektual taxlili emas)? Sodda savollar 1. filereader 2. data types 3. prediction 4. R 5. Java Ma`lumotlar intelektual taxlili API Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 2 1. Explain Appiriori algorithm(Appiriori algoritmini tushuntring)? 2. Describe backpropagation algorithm(Xatoliklarni qayta taqsimlash algoritmini tushuntring)? Sodda savollar 1. classifier 2. Rapid Minder 3. data types 4. R 5. weka API Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 3 1. What is classification algorithms(sinflarga ajratish algoritmlari nima)? 2. what is lerarning artificial neural network(Suniy neyron to'rlarini o'qitish nima)? Sodda savollar 1. k-means 2. testset 3. instances 4. prediction 5. Selection Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 4 1. Explain Appiriori algorithm(Appiriori algoritmini tushuntring)? 2. What is feature selection(Atributlarni tanlash nima)? Sodda savollar 1. dataset 2. neural network 3. target data 4. Rapid Minder 5. Tanagra Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 5 1. why we need feature selection(Atributlarni tanlash nima uchun kerak)? 2. what is desicion support systems(Qaror qabul qilish tizimlari nima)? Sodda savollar 1. instances 2. features 3. decision tree 4. weka API 5. filereader Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 6 1. Explain Appiriori algorithm(Appiriori algoritmini tushuntring)? 2. what is neural network(Neyron to'rlari nima)? Sodda savollar 1. prediction 2. weka API 3. neural network 4. xelops 5. weka Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 7 1. Explain Appiriori algorithm(Appiriori algoritmini tushuntring)? 2. what is lerarning artificial neural network(Suniy neyron to'rlarini o'qitish nima)? Sodda savollar 1. objects 2. interactive table 3. c-means 4. filereader 5. association rule Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 8 1. What is OLTP(OLTP nima)? 2. What is feature selection(Atributlarni tanlash nima)? Sodda savollar 1. target data 2. testset 3. decision tree 4. data types 5. appirori Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 9 1. What is Ma`lumotlar intelektual taxlili tools? 2. why we need feature selection(Atributlarni tanlash nima uchun kerak)? Sodda savollar 1. testset 2. Rapid Minder 3. instances 4. dataset 5. regression Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 10 1. what is lerarning artificial neural network(Suniy neyron to'rlarini o'qitish nima)? 2. why we need feature selection(Atributlarni tanlash nima uchun kerak)? Sodda savollar 1. weka 2. dataset 3. objects 4. c-means 5. testset Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 11 1. why we need feature selection(Atributlarni tanlash nima uchun kerak)? 2. What is Classification(sinflarga ajratish nima)? Sodda savollar 1. filereader 2. trainset 3. classifier 4. orange 5. target data Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 12 1. What is Ma`lumotlar intelektual taxlili(Ma'lumotlarni intellektual taxlili nima)? 2. What is Ma`lumotlar intelektual taxlili tools? Sodda savollar 1. testset 2. orange 3. decision tree 4. interactive table 5. c-means Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 13 1. What is feature selection(Atributlarni tanlash nima)? 2. What is clustering(Sinflashtrish nima)? Sodda savollar 1. Selection 2. c-means 3. prediction 4. neural network 5. trainset Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 14 1. What is feature selection(Atributlarni tanlash nima)? 2. What is Ma`lumotlar intelektual taxlili(Ma'lumotlarni intellektual taxlili nima)? Sodda savollar 1. weka 2. neural network 3. weka API 4. preprossesing 5. c-means Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 15 1. What is feature selection(Atributlarni tanlash nima)? 2. Explain Appiriori algorithm(Appiriori algoritmini tushuntring)? Sodda savollar 1. association rule 2. appirori 3. Rapid Minder 4. xelops 5. Selection Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 16 1. What is feature selection(Atributlarni tanlash nima)? 2. Describe backpropagation algorithm(Xatoliklarni qayta taqsimlash algoritmini tushuntring)? Sodda savollar 1. association rule 2. neural network 3. testset 4. trainset 5. features Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 17 1. What is feature selection(Atributlarni tanlash nima)? 2. What is classification algorithms(sinflarga ajratish algoritmlari nima)? Sodda savollar 1. c-means 2. decision tree 3. Rapid Minder 4. weka 5. k-means Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 18 1. What is Data mining tools? 2. What is OLTP(OLTP nima)? Sodda savollar 1. prediction 2. xelops 3. instances 4. R 5. weka Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 19 1. What is Classification(sinflarga ajratish nima)? 2. What is classification algorithms(sinflarga ajratish algoritmlari nima)? Sodda savollar 1. Rapid Minder 2. instances 3. c-means 4. R 5. Tanagra Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 20 1. What is pattern recognition(Timsollarni aniqlash nima)? 2. what is desicion support systems(Qaror qabul qilish tizimlari nima)? Sodda savollar 1. dataset 2. Selection 3. preprossesing 4. Java Ma`lumotlar intelektual taxlili API 5. appirori Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 21 1. why we need feature selection(Atributlarni tanlash nima uchun kerak)? 2. what is neural network(Neyron to'rlari nima)? Sodda savollar 1. R 2. c-means 3. Rapid Minder 4. trainset 5. dataset Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 22 1. What is OLAP(OLAP nima)? 2. what is desicion support systems(Qaror qabul qilish tizimlari nima)? Sodda savollar 1. classifier 2. regression 3. filereader 4. k-means 5. association rule Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 23 1. why we need feature selection(Atributlarni tanlash nima uchun kerak)? 2. Explain Appiriori algorithm(Appiriori algoritmini tushuntring)? Sodda savollar 1. features 2. regression 3. Rapid Minder 4. R 5. parametres Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 24 1. what is feedforward neural network(to'g'ri taqsimlangan neyron to'ri nima)? 2. What is pattern recognition(Timsollarni aniqlash nima)? Sodda savollar 1. classifier 2. R 3. target data 4. appirori 5. data types Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 25 1. What is pattern recognition(Timsollarni aniqlash nima)? 2. Describe backpropagation algorithm(Xatoliklarni qayta taqsimlash algoritmini tushuntring)? Sodda savollar 1. Rapid Minder 2. xelops 3. instances 4. features 5. neural network Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 26 1. what is desicion support systems(Qaror qabul qilish tizimlari nima)? 2. Ma`lumotlar intelektual taxlili tasks(MIT masalalari) Sodda savollar 1. weka 2. preprossesing 3. testset 4. regression 5. instances Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 27 1. What is Ma`lumotlar intelektual taxlili tools? 2. what is association rule(Assosiative qoida nima)? Sodda savollar 1. neural network 2. decision tree 3. orange 4. Rapid Minder 5. objects Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 28 1. what is association rule(Assosiative qoida nima)? 2. why we need feature selection(Atributlarni tanlash nima uchun kerak)? Sodda savollar 1. data types 2. c-means 3. dataset 4. objects 5. orange Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 29 1. Describe backpropagation algorithm(Xatoliklarni qayta taqsimlash algoritmini tushuntring)? 2. why we need feature selection(Atributlarni tanlash nima uchun kerak)? Sodda savollar 1. Rapid Minder 2. weka API 3. features 4. Selection 5. interactive table Kafedra mudri: Xo'jayev O. ________________________________ "Ma`lumotlar intelektual taxlili" fanidan yakuniy nazorat BILET № 30 1. what is association rule(Assosiative qoida nima)? 2. What is pattern recognition(Timsollarni aniqlash nima)? Sodda savollar 1. decision tree 2. testset 3. Tanagra 4. features 5. weka API Kafedra mudri: Xo'jayev O. Download 28.3 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling